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ABSTRACT 

 

CROSS-TALK BETWEEN PROTEIN DEGRADATION AND MRNA DECAY IN 

DIFFUSE LARGE B-CELL LYMPHOMA 

Jaewoo Choi 

Luca Busino 

 

The ubiquitin-proteasome system (UPS) plays a critical role in the maintenance of 

cellular homeostasis as it mediates the precise and temporal degradation of intracellular 

proteins and affects a variety of cellular processes. The misregulation of the ubiquitin-

proteasome system (UPS) can result in the pathogenesis of human diseases including 

cancer. A proteasome inhibitor has been proven an effective treatment for lymphoid 

malignancies, rendering the UPS appealing as a new therapeutic target for cancer. 

Despite the significant progress, much more remains to be explored in the field of 

ubiquitin and molecular mechanisms of tumorigenesis. KLHL6 is a frequently mutated in 

mature B-cell cancers, but the relevance of these mutations and molecular function of 

KLHL6 are currently not known. Here, we show that KLHL6 is a novel E3 ubiquitin 

ligase and cancer-associated somatic mutations disrupt its catalytic activity. Via 

proteomic analysis and mutagenesis screening approaches, we have further identified and 

validated Roquin2, a mRNA decay factor, as a substrate of KLHL6. The interaction 

between KLHL6 and Roquin2 requires a tyrosine in position 691 of Roquin2 and can be 

inhibited when tyrosine 691 is phosphorylated. Furthermore, using in vitro cell 

proliferation assays and xenograft mouse models, we show that KLHL6 has tumor 
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suppressive effects that are dependent on Roquin2 stabilization in diffuse large B-cell 

lymphoma (DLBCL). RNA sequencing analysis has revealed that Roquin2 regulated 

genes are implicated in the NF-κB pathway and as lymphoid tumor suppressors, 

correlating with B-cell lymphoma proliferation and survival. Taken together, the work 

described here highlights a previously uncharacterized molecular mechanism whereby 

the novel E3 ligase modulates mRNA decay through its substrate degradation and plays 

role in the pathogenesis of mature B-cell cancers. 
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PREFACE 

 

This thesis consist of a series of chapters based on the manuscript that is recently 

accepted in Nature Cell Biology, as well as unpublished data that I am planning to submit 

for publication in a small journal and some of ongoing studies in our laboratory. Chapter 

1 contains general background and introduction for all, and each chapter contains an 

introduction, result, and discussion. Chapter 2 contains experimental methods and 

Chapter 6 contains conclusions and future directions for chapter 3, 4, and 5.   
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CHAPTER 1 : INTRODUCTION 

 

The ubiquitin proteasome system (UPS) plays a critical role in the regulation of 

cell growth and survival and in maintaining cellular homeostasis. UPS mediates the 

precise and temporal degradation of 80% of intracellular proteins, and the failure to 

terminate such signals effectively results in numerous diseases, including hematological 

malignancies and cancer (Silverman et al., 2012; Skaar et al., 2013). The ubiquitin–

proteasome system is catalyzed in a stepwise manner through an enzymatic cascade in 

which ubiquitin is activated by an E1 enzyme, transferred to an E2 ubiquitin-conjugating 

enzyme, and finally transferred to a substrate selected by an E3 ubiquitin ligase. The E3 

ubiquitin ligase determines the substrate specificity for the ubiquitination of critical 

regulators. These enzymes act together in a precise and specific manner to target and 

regulate the degradation of the proteins in the proteasome complex. The proteasome 

consists of regulatory 19S cap complexes that unfold the substrates in an ATP-dependent 

manner and catalytic 20S core complexes that have proteolytic activities. (Hershko and 

Ciechanover, 1998) Proteins that are tagged by the ubiquitin chains are recognized, 

deubiquitylated, and unfolded by the 19S complex and then fed through inner 

components of the 20S proteasome chamber (Braun et al., 1999). The success of a 

proteasome inhibitor (bortezomib) in multiple myeloma and mantle cell lymphoma has 

inspired to develop novel therapeutic approaches in investigating the biological 

significance of protein ubiquitylation and degradation in B-cell cancers (Yang and Staudt, 

2015). However, bortezomib affects thousands of intra-cellular proteins and results in 

toxic side effects, which require substrate specificity. Thus, understanding how 
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ubiquitylation of protein is achieved and the downstream consequences of molecular and 

signaling events becomes essential in developing therapeutic targets and studying their 

efficacy. 

 

CULLIN-RING ubiquitin ligases  

Among more than 800 E3 ubiquitin ligases in the human genome, the CULLIN-

RING ligases (CRLs) are the largest family of E3 ubiquitin ligases. They consist of a 

CULLIN scaffold protein (CULLIN 1, 2, 3, 4A, 4B, 5, 7), a substrate receptor protein, an 

adaptor protein, and a RING protein for recruitment of the E2 enzyme (Cardozo and 

Pagano, 2004; Petroski and Deshaies, 2005c). The properties and biological function of 

CULLINs are very different and they are involved in variety of cellular processes such as 

cell growth, signal transduction, DNA replication, cell cycle, cell redox homeostasis, and 

others (Petroski and Deshaies, 2005a). In terms of a structural module, a large body of 

evidence suggests that CRLs share a similar architecture as substrates are recruited to the 

N-terminal regions of CULLINs that comprises a substrate receptor and adaptor. For the 

well-characterized example of CULLIN1, an adaptor protein SKP1 recruits numerous 

substrate receptors, F-box proteins. SKP1 can interact with both CULLIN1 and 

CULLIN7 (Dias et al., 2002). CULLIN2 and CULLIN5 utilize an elongin B/C adaptor 

protein and recruits substrates through suppressor of cytokine signaling/elongin BC 

(SOCS/BC)-box-protein, a substrate receptor. CULLIN3 utilizes BTB-domain-containing 

proteins where it can function both as an adaptor and substrate receptor. CULLIN4A uses 

an adaptor protein, DNA-damage-binding protein-1 (DDB1) (Petroski and Deshaies, 
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2005a). The activity of these CULLIN ligases is regulated by reversible conjugation of a 

small-ubiquitin like protein; Neural precursor cell expressed developmentally down-

regulated protein 8 (Nedd8) (Wu et al., 2005). Nedd8 can be covalently attached to 

CULLINs at a conserved lysine residue and follows a similar enzymatic cascade like 

ubiquitination: E1 activating enzyme (Uba/APP-BP1) and E2 (Ubc12) conjugating 

enzyme (Osaka et al., 2000; Read et al., 2000). Neddylation is critical for the function of 

CULLINs and it can also increase CULLIN1-dependent ligase activity, which can 

support the recruitment of E2s loaded with ubiquitin (Kawakami et al., 2001; Read et al., 

2000). In addition, Defective in CULLIN neddylation 1 (DCN1) works together with 

RBX1 RING finger subunit within CULLINs to stimulate NEDD8 conjugation, 

suggesting an E3-like activity for neddylation reaction (Scott et al., 2011). The Cop9 

Signalosome (CSN) with a metalloprotease JAMM motif in CSN5 subunit deneddylates 

NEDD8-CULLINs (Ambroggio et al., 2004; Cope et al., 2002). The cycling of 

neddylation and deneddylation stimulates conformational changes and allows to 

CULLINs and RING to be in a dynamic form that facilitates the transfer of ubiquitin to 

the substrates.  

 

CULLIN3-RING ubiquitin ligases 

CULLIN3 is a highly conserved in the genomes of eukaryotes and the function of 

CULLIN3 has been characterized in many different species. For example, loss of 

CULLIN3 in C. elegans leads to defects in chromosome segregation and cytokinesis 
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defects during the embryogenesis probably due to katanin Mei1 accumulation (Kurz et 

al., 2002). The genetic knockout of CULLIN3 in mice causes an embryonic lethal 

phenotype with disorganization of embryonic tissues. The CULLIN3 knockout embryos 

accumulate excess of cyclin E leading to misregulation of S phase in cell cycle (Singer et 

al., 1999). Depletion of CULLIN3 homolog in fission yeast shows a retarded growth and 

elongation phenotype with increased sensitivity for hydroxyurea although no obvious 

phenotype is observed in budding yeast (Kominami and Toda, 1997; Michel et al., 2003).  

The CULLIN3 family of ubiquitin ligases is different from other CULLIN-based 

complexes in that it only requires a protein that contains a-brac/tramtrack/broad-complex 

(BTB) that can function both as an adapter and substrate recognizer. The human genome 

encodes about 200 BTB domain proteins and the structural analysis has shown that BTB 

domain forms a five a-helical fold that resembles other adaptors similar to SKP1 and 

ElonginC (Stogios et al., 2005). Furthermore, sequence analyses of the BTB-domain 

proteins have identified some of associated domains that can be sub-classified such as 

Meprin and TRAF homology (MATH), Kelch, BTB-non-phototropic hypocotyl 3 

(NPH3), Zinc Finger, and PAM domain. Notably, these analyses also show that not all 

BTB domain proteins can serve as a adaptor for CULLIN3 (Stogios et al., 2005) as 

BTBD12 and KLHL39 that lack the 3-box motif critical for CULLIN3 binding fail to 

interact with CULLIN3 (Chen et al., 2015; Zhuang et al., 2009). In fact, many of these 

identified BTB protein family function is related to cell cycle regulation as shown by 

regulation of cyclin E degradation by CULLIN3. The maternal lethal effect-26 protein 

(MEL26), a MATH-BTB family member, degrades the complex meiosis inhibitor protein 
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(MEI-1) after meiosis to assemble a functional spindle and activate cytokinesis in the 

right time and place (Luke-Glaser et al., 2005). In addition, KLHL18-CULLIN3 complex 

promotes ubiquitylation and proteasomal degradation of Aurora-A kinase, an essential 

protein for mitotic entry. Depletion of KLHL18 results in a delay in both centrosomal 

activation of Aurora-A and timely entry into mitotic process (Moghe et al., 2012). 

Similarly, KLHL21 directly binds and ubiquitylates Aurora-B kinase, a member of the 

chromosomal passenger complex (CPC) that regulates chromosome alignment and 

separation, in the middle region of microtubules during anaphase process (Maerki et al., 

2009). KLHL22-CULLIN3 complex regulates kinetochore localization of polo-like 

kinase 1 (PLK1) that regulates mitotic division by controlling spindle assembly and 

chromosome alignment (Beck et al., 2013; Elowe et al., 2007). Although KLHL22 does 

not regulate PLK1 stability, loss of KLHL22 results in accumulation of PLK1 on 

kinetochores and sustained activation of the spindle assembly checkpoint, leading to 

unstable kinetochore-microtubule interaction.  

The other unique property of BTB-domain containing protein is that they can 

dimerize and form two CULLIN3 complexes within one E3 ligase complex, a feature that 

can increase the affinity for substrates (Zhuang et al., 2009). The best example for 

dimerization in substrate recognition is human Keap1 dimer that binds single Nrf2 

molecule with two distinct binding sites (McMahon et al., 2006) important for optimal 

orientation of ubiquitylation. The CULLIN3-SPOP complex and CULLIN3-HIB 

complex also are shown to assemble dimers to recognize a single substrate (Zhang et al., 

2009). Furthermore, SPOP-mediated CULLIN3 dimerization can enhance a rate of 
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polyubiquitylation by increasing associated E2 enzymes. Furthermore, there are cases 

where CULLIN3 complexes such as KCTD11 and SPOP form high orders of 

oligomerization that increase E3 ligase activity similar to dimerization (Correale et al., 

2011; Errington et al., 2012).  

 

CULLIN3-RING ubiquitin ligases in cancer 

Following, I will provide descriptions for some of CULLIN3-based E3 ligases 

implicated in cancer biology. 

KEAP1: One of the well-characterized CULLIN3 adaptor proteins is the BTB-

Kelch-like ECH-associated protein (Keap1 or KLHL19) (Motohashi and Yamamoto, 

2004). Keap1 was first identified as a critical inhibitor of the transcription factor Nf-E2-

related factor 2 (Nrf2) by targeting it for proteasomal degradation at a steady state 

(Cullinan et al., 2004; Itoh et al., 1999; Kobayashi et al., 2004). Upon the oxidative or 

electrophilic stress, cysteine residues in Keap1 can be modified and this leads to a 

conformational change inhibiting activity of CULLIN3-Keap1 ubiquitin ligase complex. 

Accordingly, Nrf2 is stabilized and is now free to translocate into the nucleus to bind 

anti-oxidant responsive elements (ARE) of its target genes encoding many cytoprotective 

enzymes (Cullinan et al., 2004). Thus, the Keap1-Nrf2 pathway is a critical factor in the 

stress response and cell protective mechanism. As the oxidative stress is implicated in 

cancer, it is conceivable that cancer cells might hijack this pathway for their growth and 

survival under the stress conditions. For instance, increased Nrf2 expression provides 
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chemo-resistant phenotype in cancer cells while knocking down Nrf2 increases their 

sensitivity to chemotherapy. Moreover, overexpression of Nrf2 is shown to inhibit p53-

dependent apoptosis, suppress reactive oxygen species (ROS) production in response to 

oncoproteins and promote proliferation of tumor cells (DeNicola et al., 2011; Faraonio et 

al., 2006).  

Accumulating evidence suggests that the components of the Keap1-Nrf2 pathway 

are mutated in a variety of cancer types including ovarian, liver, lung and gallbladder 

cancers (Konstantinopoulos et al., 2011; Shibata et al., 2008; Yoo et al., 2012). The 

somatic mutations of the substrate-binding domain of Keap1 have been first found in 

lung cancer leading to its loss of function (Ohta et al., 2008; Singh et al., 2006). In 

addition, the BACK domain of Keap1 has been also altered and mutated, resulting into 

disruption of CULLIN3 binding and subsequent repression of ligase activity. In some 

cases, the mutations of Keap1 have a dominant negative effect that can disrupt the 

function of wild-type Keap1 and consequently activation of Nrf2. The gain of function 

mutation of Nrf2 has also been observed in several cancers and these mutations directly 

disrupt the DLG or ETGE motif where Keap1 binds (Ohta et al., 2008; Shibata et al., 

2011). Nrf2 can also indirectly activate the transcription of the multidrug resistance-

associated protein-1 (MRP1). MRP1 has been considered as a critical regulator of chemo-

resistance and is constitutively expressed in the presence of Nrf2 (Ji et al., 2013). Other 

additional mechanisms such as hyper-methylation or mi-RNA silencing also deregulate 

the Keap1-Nrf2 pathway to repress Keap1 promoter or target Nrf2 levels, respectively 

(Eades et al., 2011; Guo et al., 2012; Wang et al., 2008).  
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SPOP: Emerging evidences have shown that Speckle-type POZ (pox virus and 

zinc finger protein) protein (SPOP) is involved in prostate and endometrial cancers (Kan 

et al., 2010). SPOP contains a MATH domain, BTB/POZ domain, and nuclear 

localization sequence in the C-terminus (Mani, 2014). The MATH domain is utilized for 

substrate binding while the BTB/POZ domain binds CULLIN3 to form an active E3 

ligase complex. To date, all SPOP mutations identified in prostate and endometrial 

cancers are clustered in the MATH domain, supposedly disrupting the substrate binding. 

Interestingly, SPOP has a tumor suppressor role in these cancers while it has oncogenic 

role in kidney cancers where no mutations have been reported (Li et al., 2014). In fact, 

SPOP is another transcriptional target of HIFs and SPOP accumulation promotes 

tumorigenesis under the hypoxia condition. In clear cell renal cell carcinoma, SPOP is 

shown to degrade tumor suppressors such as PTEN, ERK phosphatases (DUSP6 and 

DUSP7) and pro-apoptotic DAXX protein, suggesting that it acts as a key modulator of 

proliferation pathway. On the other hand, SPOP directly targets oncoproteins such as 

androgen receptor (AR) and steroid receptor co-activator (SRC)-3 in the context of 

prostate cancers. AR signaling is essential for tumor initiation and progression. 

Importantly, SPOP cancer-associated mutations fail to bind AR, inhibiting AR 

proteolysis by the proteasome. Moreover, AR splicing mutations have been observed 

where it loses SPOP-binding hinge domain and are insensitive to SPOP-dependent 

degradation (An et al., 2014). Similar mechanisms apply for SRC-3 mutations to enhance 

AR functions and AR signaling pathways and promote prostate cancer development. This 

dual tumor-promoting or tumor-suppressing function of SPOP is partially explained by 
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its different substrates in different cancer types, suggesting that SPOP function is cell-

context and substrate-dependent.  

KLHL25: Recently, KLHL25-CULLIN3 complex has been shown to target ATP-

citrate lyase (ACLY), a key regulator of de novo lipid synthesis (Zhang et al., 2016). 

ACLY is an enzyme that converts citrate to acetyl-CoA in the cytosol, and this acetyl-

CoA is utilized to create fatty acids, cholesterol, and isoprenoids (Menendez and Lupu, 

2007). ACLY is frequently elevated in several cancers including lung cancer and 

suppression of ACLY by a small molecular inhibitor has shown an efficacy in slowing 

down the tumor proliferation (Hatzivassiliou et al., 2005; Milgraum et al., 1997). In lung 

cancers, CULLIN3 expression is often down-regulated and subsequently ACLY is 

overexpressed, which is critical for lipid synthesis and proliferation of cancer cells. This 

novel tumor suppressing mechanism of CULLIN3 could be a potential therapeutic target 

with lung cancer with lower CULLIN3 expression.  

KLHL20: Kelch-like family member 20 (KLHL20) is another adaptor protein that 

can bind to CULLIN3 and acts as CULLIN3-RING ubiquitin ligase complex. This 

protein has also been implicated in cancers, as it is first uncovered as a binding partner of 

death-associated protein kinase (DAPK), a tumor suppressor promoting cell death (Lee et 

al., 2010). By directly ubiquitylating and degrading DAPK, KLHL20-CULLIN3 complex 

can antagonize the cellular apoptosis, autophagic death, and necrosis. In addition to 

cellular death mechanisms, DAPK can also suppress cell migration and motility by 

regulating cytoskeletal proteins, thereby promoting anti-metastatic effects (Chen et al., 

2014). Interferon (IFN) signaling regulates the KLHL20-DAPK pathway as IFN-α and 
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IFN-γ can can sequester KLHL20 into the PML-nuclear body. Induction of PML by 

interferon promotes INF-induced cell death since PML competes with DAPK for 

KLHL20 binding, resulting in stabilization of DAPK. This establishes the basis for IFN-

based cancer treatment. The fact that PML interacts with KLHL20 suggests that PML 

serves as a substrate of KLHL20. Previous studies have shown that PML, similar to 

DAPK, also exerts tumor suppressive effects as it can induce apoptosis and inhibit 

proliferation, metastasis and neo-angiogenesis (Bernardi et al., 2006; Reineke et al., 

2010). Consistent with antitumor effects of PML, this gene is frequently mutated or 

deleted in a variety of cancer types. One of the main mechanisms to down-regulate PML 

protein levels in tumors is through hypoxia-inducible factor-1 (HIF-1) (Yuan et al., 

2011). HIF-1 and HIF-2 can mediate the transcriptional programs of genes that contain 

hypoxia responsive element (HRE) and influence many different aspects including 

metastasis, metabolic reprogramming, tumor initiation and maintenance, angiogenesis, 

chemotherapy resistance, and others (Semenza, 2012).  Since KLHL20 contains HREs in 

its promoter, its expression is induced under hypoxia condition and potentiates PML 

ubiquitylationa and degradation by proteasome. Accordingly, KLHL20 expression is up-

regulated and PML is down-regulated in tumors as HIF-1a is frequently elevated through 

hypoxia-regulated mechanism. Specifically, the KLHL20-PML pathway is dysregulated 

in prostate cancers and KLHL20, HIF-1α , and PML expression pattern nicely correlates 

with survival and disease progression. Interestingly, KLHL20 interacts with KLHL39, 

which adds an additional layer of regulation to this pathway, as it can block KLHL20-

mediated degradation of PML and DAPK by binding to KLHL20 and disrupting 
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interaction of these substrates from KLHL20 (Chen et al., 2015). Although KLHL39 is a 

BTB-Kelch protein, it does not bind to CULLIN3 and is not able to form a functional E3 

ligase. Rather, it can regulate PML and DAPK stability as an inhibitor of KLHL20-

CULLIN3 complex.  

 A significant number of studies, as shown above, highlight the biological function 

of CULLIN3-RING ubiquitin ligases in cancer. More comprehensive understanding with 

systematic characterization of other CULLIN3 adaptors will be helpful to develop new 

therapeutic targets for cancer prevention. Further, it would be interesting to identify other 

BTB-proteins that are involved in development of other human pathologies and 

investigate novel insights into molecular basis of CULLIN3 E3 ligases and substrates.  

 

Protein ubiquitylation and de-ubiquitylation in lymphoid malignancies 

Emerging evidences suggest that human lymphoid cancers are derived from 

various stages of B-cell differentiation and where the cancers are originated dictate their 

biology. Mantle cell lymphoma and chronic lymphocytic leukemia are from pre-germinal 

center mature B-cells whereas the most of non-Hodkin’s lymphomas and multiple 

myeloma are from germinal center B-cells or B-cells that have passed though germinal 

center. Gene expression profile studies have provided instructive recognition of different 

subtypes by specific transcriptional signatures (Staudt and Dave, 2005). Based on these 

signatures, the germinal center B cell-like (GCB) subtype of diffuse large B-cell 

lymphoma (DLBCL), follicular lymphoma, and Burkitt lymphoma appear to be from 
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germinal center B cells while the activated B cell-like (ABC) subtype of DLBCL appear 

to be from a post-germinal center B cells. A third subgroup of DLBCL, primary 

mediastinal B-cell lymphoma (PMBL) shares a significant similarity with Hodgkin 

lymphoma and is believed to arise from thymic post- germinal center B cells (Staudt and 

Dave, 2005).  

It is conceivable that each of these lymphoid malignancies might activate 

oncogenic signaling pathways through different genomic alterations such as mutations, 

deletions, amplifications and translocations to promote their growth and survival. In some 

cases, the constitutive signaling comes from chromosomal rearrangements of 

transcription regulators such as Bcl6 and Irf4 (Pasqualucci and Dalla-Favera, 2015). 

Perhaps, the most common ways for lymphoid malignancies to prevent cell apoptosis is 

the constitutive activation of NF-κB pathway. Various upstream of NF-κB signaling 

molecules are aberrantly mutated from oncogenic events leading to more translocation of 

NF-κB into the nucleus and activation of pro-survival transcription programs. These 

oncogenic pathways are the hallmarks of ABC-DLBCL subtype and are regulated at 

numerous levels by ubiquitination and deubiquitination enzymes (Staudt, 2010). 

 

Protein ubiquitination in the oncogenic signaling pathway of ABC-DLBCLs 

ABC-DLBCL cell lines are addicted to NF-κB activation for their survival, and 

this subtype has gene expression profiling similar to normal B-cells that are activated by 

antigen recognition of the B-cell receptor (BCR). The BCR signaling triggers numerous 
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downstream signaling molecules to regulate proliferation and survival during B-cell 

development and is turned off in a tight fashion for cellular homeostasis. There are other 

receptors including CD40, BAFF, TNF receptor family, and various Toll-like receptors 

(TLRs) that can eventually converge into the NF-κB pathway (Young et al., 2015). ABC-

DLBCLs display a high activity of IKKβ and knockdown of this kinase in a loss of 

function RNA interference (RNAi) screening showed toxicity effects specifically to 

ABC-DLBCL subtype. Further, previous RNAi study revealed a critical role CARD11-

BCL10-MALT1 (CBM) complex, which is an upstream signalosome of IKK activation 

and mediator of NF-κB activation, as knockdown of each component was also toxic to 

ABC-DLBCL cell lines (Ngo et al., 2006). In normal B-cells, BCR signaling activates 

protein kinase C β (PKCβ), which in turn phosphorylates CARD11, releasing the 

inhibitory linker domain and changing into an active conformation. The active CARD11 

translocates to the inner part of plasma membrane, recruits and associates with BCL10 

and MALT1 to form an active complex. About 10% of ABC-DLBCLs carry activating 

mutations in the coiled-coil domain of CARD11, which causes freeing of the linker 

domain without PKCβ phosphorylation and allows formation of CARD11 clusters that 

co-localize with MALT1 and IKKβ (Lenz et al., 2008a). The levels of NF-κB activity 

correlate with those of CARD11 clusters in the cancer cells with mutations of CARD11, 

supporting the relevance of the complex in pathology of ABC-DLBCLs. 

Once the CBM complex is assembled, it promotes K63-linked ubiquitination 

chains by TRAF6 E3 ligase family. TRAF6 family contains a RING domain in the N-

terminus, zinc finger domain, and TRAF domain. MALT1, a protease that is 
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constitutively activated in ABC-DLBCLs, brings TRAF6 to the CBM complex through 

TRAF6 binding domain and triggers auto-ubiquitination of TRAF6 with K63-linked 

chains. TRAF6 also functions as an E3 ligase for K63-polyubiquitination of MALT1 

(Oeckinghaus et al., 2007). The importance of MALT1 K63-ubiquitin chains are 

supported by the MALT1 mutants that are not able to rescue NF-κB signaling in 

MALT1-lacking cells. MALT1, acting as a scaffold protein, in the CBM complex is 

recently shown to be mono-ubiquitinated on lysine 644 residue, which is necessary and 

sufficient for activation of its protease activity (Pelzer et al., 2013). This allows MALT1 

dimerization, which is critical for its enzymatic function. In ABC-DLBCLs, MALT1 is 

mono-ubiquitinated constitutively, and MALT1 mutant that cannot be mono-

ubiquitinated is toxic to ABC-DLBCLs. Although CARD11 mutations contribute to 

oncogenic transformation in ABC-DLBCLs, the majority of ABC tumors do not contain 

mutations of the CBM complex, suggesting that upstream signaling pathways such as 

BCR signaling.  

Another pathway relevant in ABC-DLBCLs is the Toll-like receptors (TLRs) and 

MYD88. About 30% of oncogenic active MYD88 mutations are found in ABCL-

DLBCLs, and the mutation targets the L265 residue in Toll/IL1 receptor (TIR) domain to 

Proline, which is essential for homo- and hetero-dimerization with TLRs (Ngo et al., 

2011). This mutation induces activation of IRAK4, which in turn promotes the formation 

of a protein complex with IRAK4 and IRAK1 and activates NF-kB pathway. The ectopic 

expression of L256P mutant form of MYD88 is shown to induce NF-κB activation and 

this mutant cannot be substituted with the wild-type MYD88 in ABC-DLBCLs for their 
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survival. In Toll-like receptor (TLR) signaling pathway, interaction of MYD88 with 

IRAK4 and IRAK1 leads to recruitment of TRAF6. TRAF6 undergoes auto-

ubiquitination with K63-linked ubiquitin chains that create interaction sites for other 

proteins such as TAK1. The recruitment of TAK1 to TRAF6 leads to activation of TAK1 

itself that can phosphorylate IKKβ (Bhoj and Chen, 2009). IRAK1 can also be poly-

ubiquitinated by K63-linked chains in TLR signaling and mutations that impair this 

ubiquitination are shown to inhibit NF-κB activation. Although mutation of MYD88 can 

promote ABC-DLBCL through activation of NF-κB pathway, the evidence of MYD88-

IRAK1-IRAK4 ubiquitination status is lacking. Moreover, whether TRAF6 is modified 

with K63-ubiquitin chains and how this might contribute to oncogenic MYD88 signaling 

pathway still remains open questions and will be important to understand the biology of 

ABC-DLBCLs.  

The linear ubiquitin chain assembly complex (LUBAC) also plays an oncogenic 

role in activating NF-kB signaling pathway. LUBAC consists of RNF31 (HOIP), RBCK1 

(HOIL-1L), and SHARPIN, and RNF31 belongs to the RBR family of E3 ligases that 

promotes the formation of linear polyubiquination (Kirisako et al., 2006). In a classical 

NF-κB pathway, it targets NEMO/IKKγ to promote linear ubiquitination, which is 

necessary for IKK activation. LUBAC is recruited to receptor complexes including 

TRAFs and other ubiquitin ligases with K63-linked chains and provides binding domains 

for additional IKK complexes to be recruited. The auto-phosphorylation of IKK 

complexes due to the close proximity of each component increases NF-κB activation. 

LUBAC can also associate with the CBM complex through interaction with other 
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ubiquitin chains attached to the complex. LUBAC induces MALT1 activity and plays a 

crucial role in chronic active BCR signaling in ABC-DLBCL cell lines as depletion of 

components of LUBAC impaired NF-κB activity and is toxic to the cells (Yang et al., 

2014). The cancer-associated mutations of LUBAC have been shown to increase 

ubiquitin ligase activity of LUBAC by enhancing the interaction between RBCK1 and 

RNF31, which in turn increases NF-κB pathway. Given that mutations increase the 

binding of LUBAC components, it is conceivable that a small molecule inhibitor of 

RFN31-RBCK1 interaction could be a potential therapeutic target in ABC-DLBCLs.  

 

TNFAIP3/A20 in ABC-DLBCLs 

As mentioned previously, protein ubiquitination play an essential role in 

regulating NF-κB activity. Ubiquitination process can be reversed by the deubiquitinating 

enzymes (DUBs), and there are about 100 DUBs in the human genome (Nijman et al., 

2005). One of the most essential DUBs in lymphoid biology is the gene encoding A20 

(also known as TNFAIP3). A20 is first identified as the primary gene induced by TNF 

treatment in endothelial cells and characterized as a protector from TNF-induced cell 

death (Dixit et al., 1990). Further studies have demonstrated the role of A20 as a negative 

regulator of NF-κB activation in response to TNF, CD40, interleukin (IL-1), and B- and 

T-cell receptor activation (Beyaert et al., 2000). As mentioned above, NF-κB signaling 

pathway is heavily dependent on protein ubiquitination and A20 is a central modulator of 

this ubiquitin-dependent signaling pathways. A20 is a dual function protein containing an 
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amino-terminal ovarian tumor (OTU) domain for deubiquitinating activity and zinc finger 

domain for ubiquitin ligase activity. The first substrate identified for A20 is receptor 

interacting protein-1 (RIP-1) (Wertz et al., 2004). The K63-ubiquitin chains of RIP-1 are 

modified by cellular inhibitor of apoptosis proteins (cIAP 1/2) during TNF receptor 

stimulation and deubiquitinated by A20. In immune cells, other identified substrates for 

A20 include MALT1, TRAF6, and IKKγ through poly-ubiquitination with K63-linked 

ubiquitin chains (Hymowitz and Wertz, 2010). A20 is recruited to CBM complex by 

binding to K63-linked poly-ubiquitin chains from the signalosomes upon the recognition 

of antigen in normal lymphocytes. CBM complex formation can activate TAK1 kinase to 

phosphorylate IKKβ, leading to NF-κB activation. MALT1 cleavage of A20 is also 

increased upon recruitment of A20 to CBM complex (Coornaert et al., 2008).  

One of the critical roles of A20 is to establish a negative feedback that terminates 

the NF-κB signaling. One model suggests that A20 removes K63-linked chains by its 

DUB activity and replacing with K48-linked chains that lead to degradation of its 

substrates (Wertz et al., 2004). However, other study provides an evidence that the ability 

of A20 to bind ubiquitin chains through its zinc finger domain is sufficient to block NF-

κB activation, suggesting its ligase activity is dispensable for IKK activation (Bosanac et 

al., 2010; Skaug et al., 2011). Specifically, its zinc finger #4 domain has an ability to bind 

K63-ubiquitin chains and this binding contributes to repression of TNF-α medicated NF-

κB activation. Therefore, it is conceivable that A20 acts in a variety of different ways 

such as interacting with and promoting ubiquitination and de-ubiquitination proteins 

involved in NF-κB pathway. In normal mouse B-cells, deletion of A20 enhances their 
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response to variety of stimuli including BCR signaling activation. Consequently, mice are 

prone to develop autoimmunity due to increase in germinal center B-cells and plasma 

cells and die from the lethal inflammatory phenotypes (Turer et al., 2008).  

A20 is frequently inactivated or lost by mutation, deletion, translocation and 

epigenetically silencing in lymphoid malignancies. ABC-DLBCL, MALT lymphomas, 

and classical Hodkin’s lymphoma carry inactivating mutations of A20 about 25%, 20%, 

and 45%, respectively (Compagno et al., 2009; Kato et al., 2009; Novak et al., 2009). 

A20 is well characterized as a tumor suppressor in ABC-DLBCLs as re-introduction of 

wild-type A20 in ABC-DLBCLs with biallelic deletion of A20 is shown to cause cellular 

apoptosis and growth arrest. A20 inactivation co-occurs with MYD88 and CD79B 

mutations, suggesting that it might contribute to oncogenic MYD88 and BCR signaling 

pathways (Ngo et al., 2011). In ABC-DLBCLs, it is likely that A20 mutations can 

enhance constitutive NF-κB signaling with other genetic alteration events and its 

mutation alone may not be sufficient to activate NF-κB signaling activity. Of note, A20 is 

recruited to the CBM complex when IKKγ is modified with linear ubiquitin chains via 

LUBAC and gain of function mutations of LUBAC increases A20 recruitment (Yang et 

al., 2014). Given that virtually almost all lymphoid malignancies activate NF-κB 

signaling for their growth and survival, pharmacological interference with this pathway 

provides a strong rationale for therapeutics.  

 

Pharmacological inhibitions in lymphoid malignancies 
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Given that UPS plays an important role in a variety of biological processes, it is 

conceivable that deregulation in this system would contribute to human diseases 

including lymphoid malignancies. The proteasome degradation is the final step in the 

UPS pathway and proteasome is investigated as the first potential target for therapeutic 

approaches. Proteasome inhibitors were initially synthesized to determine the function 

and proteolytic specificity of the proteasome (Vinitsky et al., 1994; Vinitsky et al., 1992). 

The possibility of proteasome inhibitors as therapeutic agents derives from the early work 

where the inhibitors induced apoptotic cell death in leukemic cell lines (Imajoh-Ohmi et 

al., 1995; Shinohara et al., 1996). This tumor inhibition effect was supported further by 

efficacy of the proteasome inhibitor against an in vivo Burkitt’s lymphoma tumor model 

(Orlowski et al., 1998). Later on, proteasome inhibitors showed a wide spectrum of pro-

apoptotic effects against hematologic malignancies and solid tumors including non-small 

cell lung and prostate cancer as well as follicular non-Hodgkin’s lymphoma, multiple 

myeloma and mantle cell lymphoma (Aghajanian et al., 2002; Cortes et al., 2004; 

Papandreou et al., 2004; Richardson et al., 2003).  

One of the mechanisms of proteasome inhibitors is to suppress nuclear factor-κB 

(NF-κB) signaling by stabilizing the inhibitory molecule IκB that binds NF-κB factors. 

This, in turn, prevents NF-κB factors from nuclear translocation and down-regulates their 

target genes, resulting in anti-survival effects. Specifically, NF-κB can induce production 

of growth and angiogenesis factor like interleukin-6 and increase expression of cell 

adhesion molecules such as ICAM-1 by plasma cells, promoting tumor 

microenvironment. Given that NF-κB is involved in suppression of apoptosis, 
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proliferation, angiogenesis, and oncogenic transformation, it is considered that the NF-κB 

pathway is central to pathogenesis of cancer and a strong rationale therapeutic target. In 

addition, the pro-survival effects of NF-κB functions are activated by the chemotherapies 

and inhibition of this pathway enhances sensitivity to the treatment (Wang et al., 1999; 

Wang et al., 1996). In addition to NF-κB inhibition, there are number of other 

mechanisms of proteasome inhibitors that contribute to anti-tumor effects. For instance, 

the inhibitors can interfere with timely degradation of cell cycle regulators such as p27 

and p21, causing cell cycle arrest in cancer cells while they can also accumulate c-myc 

and cylin-D1 for the proliferative effect (Adams et al., 1999; Almond and Cohen, 2002; 

Chauhan et al., 2005). The proteasome inhibitor can also stabilize pro-apoptotic proteins 

such as p53 and Bax proteins and anti-apoptotic Bcl-2, promoting a pro-survival state 

(Hideshima et al., 2003). It is recognized that proteasome activity is generally elevated in 

lymphoid malignancies, and this led to development of more potent and selective 

proteasome inhibitor with improved pharmacological properties, a bortezomib, which is 

entered into the clinic trials (Jagannath et al., 2004; Richardson et al., 2003; Richardson 

et al., 2006).  

Bortezomib, a boronic acid dipeptide, binds with high specificity and affinity to 

the 20S proteasome reversibly and blocks its hydrolyzing activity. In the animal models, 

bortezomib did not enter the tissues such as brain, eyes and spinal cord, suggesting that 

these tissues are protected from toxic effects of proteasome inhibition (Adams et al., 

1999). Strikingly, bortezomib potently inhibited proliferation of multiple myeloma cells 

and binding of these tumor cells to bone marrow stromal cells in preclinical models, thus 
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inhibiting tumor microenvironment. Bortezomib-induced cell death is accompanied by 

release of a pro-apoptoic mitochondrial protein such as cytochrome c, up-regulation of 

endoplasmic reticulum (ER) stress, and induction of c-Jun N-terminal kinase (JNK) 

(Mitsiades et al., 2002). Activation of JNK leads to Fas up-regulation and induction of 

caspase-8-mediated apoptotic pathway with caspase-3 activation. Caspase-3 induction 

results in cell apoptosis by increase of p53 activity by MDM2 degradation. Several 

evidences have suggested that myeloma cells are highly sensitive to bortezomib because 

of high level of immunoglobulin synthesis that correlates with the high level of ER stress 

(Nawrocki et al., 2005a; Nawrocki et al., 2005b; Obeng et al., 2006). This characteristic 

of myeloma cells make them more dependent on unfolded-protein response and 

susceptible to bortezomib compared to other B-cell malignancies. The efficacy and safety 

of this drug were proven through Phase 1-3 clinical trials and the impressive results led to 

an approval by the FDA in 2003 to use bortezomib as the third-line treatment for relapsed 

or refractory plasma cell myeloma (PCM) patients (Kane et al., 2003; Kane et al., 2006). 

Subsequently, it became the first line treatment in 2008 (Islam and Ambrus, 2008; San 

Miguel et al., 2008). There are extensive ongoing studies to examine the combination of 

bortezomib and other chemotherapy or active agents in clinical trials for blood cancers.  

Given that ABC-DLBCLs harbor constitutive NF-κB activation, combination of 

bortezomib treatment and cytotoxic chemotherapy (Etoposide, Prednisolone, Oncovin, 

Cyclophosphamide, and Hydroxydaunorubicin called EPOCH) in a clinical trial was 

initiated for the relapsed and refractory DLBCL patients (Dunleavy et al., 2009). 

Although bortezomib as a single agent did not show any efficacies, the combination 
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therapy yielded high responses and greatly improved overall survival rates specifically in 

ABC-DLBCL patients. This was remarkable achievement in that previous clinical trials 

with chemotherapy alone had very poorer cure rates. Another way of targeting NF-κB is 

to interfere with β-TrCP ligase that recognizes the phosphorylated IkBα and degrades in 

a proteasome-dependent manner. The NEDD8 modification is required for CULLIN-

RING-ubiquitin ligases and small molecule (MLN4924) that inhibits NEDD8 activating 

enzyme (NAE) has been regarded as an attractive therapeutic approach in clinical trials 

(Soucy et al., 2009). Treatment with MLN4924 can inhibit neddylation and the ligase 

activity of β-TrCP to promote IκBα stabilization, leading to suppression of NF-κB 

transcriptional program. Additionally, inhibition of MALT1 proteolytic activity with 

peptide mimetics showed efficacy in decreasing NF-κB activation and IL-2 secretion in 

antigen-stimulated T-cells (Rebeaud et al., 2008). Since MALT1 also cleaves and 

inactivate A20, the peptide inhibitors of MALT1 have also been utilized and shown some 

toxicity in ABC-DLBCL cell lines even in those with CARD11 mutations, providing a 

great rationale for development of MALT1 therapy (Ferch et al., 2009; Hailfinger et al., 

2009). More recently, the most prominent therapeutic targets are upstream kinases of 

IKK complexes including BTK kinase that couples chronic active BCR signaling with 

NF-κB activation. The BTK inhibitor, ibrutinib, is an irreversible and covalent inhibitor 

and shown to potently target BCR signaling and inhibit lymphocytes adhesion and tumor-

promoting microenvironment (Davis et al., 2010; Yang et al., 2012). Specifically, it can 

prevent bone-marrow homing mechanisms of lymphoma cells and lead the cells from the 

tissue to the peripheral blood causing lymphocytosis. Almost all BCR signaling inhibitors 
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utilize this similar mechanism to attack lymphoid malignancies. Given that ABC-

DLBCLs depends on BCR and NF-κB signaling for its growth and survival, it is 

expected that the patients with this subtype would be more responsive to ibrutinib 

treatment. The phase II trials have confirmed that ibrutinib produced complete and partial 

response about 40% in ABC-DLBCL patients, but only 5% in GCB-DLBCL patients 

(Wilson et al., 2015). The interesting point of this study was that ABC tumors with 

concomitant MYD88 mutations with BCR mutations display greater response rates, a 

result confirming cooperation between BCR and MYD88 pathways. Both SYK and 

PKCβ kinases are therapeutic targets because PKCβ phosphorylates and activates the 

wild-type CARD11 and SYK phosphorylates many downstream effectors of BCR 

signaling pathway. Although SYK inhibitor, fostamatinib, showed some efficacy (22%) 

in phase I/II study for DLBCL patients, the follow-up phase II trial only showed 3% for 

refractory and relapsed DLBCL patients and no response rate for ABC-DLBCL (Flinn et 

al., 2016). However, BCR pathway inhibitors are very effective treating CLL and MCL 

and considered a major breakthrough for treating B-cell malignancies although the 

reasons why these particular B-cell cancers are more sensitive are not much known 

(Jerkeman et al., 2017). Nevertheless, BCR inhibition will be the basis for therapeutic 

combination therapy and understanding molecular mechanism for drug sensitivity and 

resistance will help to design more rational treatment for the lymphoid malignancies. In 

addition, going forward, evaluation of risks such as unexpected side effects along with 

benefits of combination therapy will be critical for the effective targeted treatment.  
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CHAPTER 2 : EXPERIMENTAL METHODS 

 

Cell lines, antibodies, drugs, and other reagents 

HEK293T cells were cultured using Dulbecco’s modified Eagle’s medium containing 

10% fetal bovine serum (FBS). The following cell lines were cultured in RPMI 1640 

medium containing 10% FBS: BJAB, Pfeiffer, OCI-LY8, Karpas422, ARP1, SUDHL4, 

SUDHL6, SUDHL10, VAL RAMOS, U2932, TMD8, HBL1, RCK8, and HLY-1. The 

following cell lines were cultured in Iscove’s modified Dulbecco’s Medium containing 

10% FBS: OCI-LY1, OCI-LY7, OCI-LY10, and OCI-LY19. All antibodies were diluted 

with 1:1000 ratio unless otherwise specified. The following antibodies were used: anti-

Roquin1/2 (MABF288), anti-Roquin2 (sc-165026) anti-Roquin2 (Bethyl Laboratories, 

A305-150A), anti-KLHL6 (ab182163), anti-KLHL6 (NBP1-46128), anti-Tubulin (sc-

8035), anti-GAPDH (MAB374,1:5000), anti-CDK1 (sc-954), anti-CDK2 (sc-163), anti-

p-AKT S473 (CST, #4051), anti-FLAG (Sigma F7425, 1:3000), anti-HA (Biolegend, 

#901513), anti-Cullin1 (Invitrogen, #71-8700), anti-Cullin3 (Bethyl Laboratories, A301-

109A), anti-ubiquitin K48 (EMD Millipore, 05-1307), anti-p-ERK T202/Y204 (CST, 

#9101), anti-ERK1/2 (CST, #9102), anti-AKT (CST, #4691), anti-TNFAIP3 (CST, 

#5630), anti-p-IkB S32 (CST, #2859,1:500), anti-p100/p52 (CST, #4882), anti-p105/p50 

(sc-7178), anti-RelA (sc-372), anti-RelB (sc-226), anti-histone H2A(EMD Millipore, 07-

146) and anti-histone H3 (ab1791, 1:5000), ECL Rabbit IgG HRP-linked whole antibody 

(NA934-1ML, 1:5000), ECL Mouse IgG, HRP-linked whole antibody (NA931-1ML, 

1:5000), Anti-Rat IgG (H+L) polyclonal antibody (Jackson Immunoresearch, 112-035-
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003, 1:5000), Anti-Goat IgG (H+L) polyclonal antibody (Jackson Immunoresearch, 705-

035-003,1:5000). The following agarose beads were used: anti-FLAG-M2 affinity gel 

(Sigma, A2220) and Strep-Tactin Superflow 50% suspension (Neuromics). Goat-F(ab’)2 

anti-human IgM (SouthernBiotech, #2022-01) was used for BCR stimulation experiment. 

150µl of Corning Matrigel Basement Membrane Matrix was used in mix of 100µl of 

DMEM/F12 containing 10% Knockout Serum Replacement (SR) and plated in Millicell 

EZ slide (Millipore) for 3D culture assays. Cell colonies were grown for 14 days and 

300µl of Corning Dispase (#354235) was used to count the cell numbers according to 

manufacturers’ protocols. The following drugs were used: ActinomycinD (Sigma 

Aldrich; 2µg/ml final concentration), proteasome inhibitor MG132 (Peptide Institute Inc.; 

10 µM final concentration), Cycloheximide (Sigma Aldrich; 50µg/ml final 

concentration), Doxycycline hyclate (Sigma Aldrich; 1 µg/ml final concentration), IKK-

16 (Selleckchem; 10µM final concentration), MLN4924 (Active Biochem; 5µM final 

concentration), Bortezomib (Selleckchem), Ibrutinib (Selleckchem; 5µM final 

concentration). Cells were also selected with puromycin (Sigma Aldrich; 0.5µg/ml-

1µg/ml final concentration) and hygromycin (ThermoFisher; 100µg/ml) for generation of 

stable cell lines. MTS assays (Promega, G5421), AnnexinV staining (Thermo fisher 

Annexin V, Alexa Fluor® 680 conjugate; A35109) was carried out according to 

manufacturers’ protocols. FITC mouse anti-human IgM (BD, #562029) and APC mouse 

anti-human IgG (BD, #562025) were used according to manufacturing instruction to 

detect expression of B-cell receptors.  
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Immunoblotting and immunoprecipitation 

For immunoblotting, cell lysis was carried out with RIPA-lysis buffer (50 mM Tris pH 

8.0, 150 mM NaCl, 0.1% SDS, 0.5% Na deoxycholate, 1% NP-40) supplemented with 

protease and phosphatase inhibitors and N-ethylmaleimide (Sigma Aldrich; 10mM). 

Equal amount of proteins (~15µg) were used to a 6% polyacrylamide gel for 

electrophoresis. Bands quantification was performed using ImageJ software and plotted 

using nonlinear-fit curve in Prism.  For immunoprecipitation, cell lysis was carried out 

with NP40 buffer (15 mM Tris pH 7.4, 1 mM EDTA, 150 mM NaCl, 1 mM MgCl2, 10% 

glycerol, 0.1% NP-40) containing protease inhibitors and DTT. After 5 min of lysis, the 

whole cell lysates were spun at 15,000 rpm for 5 min at 4 ºC. The supernatants were 

incubated with 15 µL of anti-FLAG-M2 affinity gel agarose beads per each sample for 2 

hrs at 4 ºC. After 4 washes with NP-40 lysis buffer, the immunoprecipitates were eluted 

with 2X Laemmeli buffer (240 mM Tris pH 6.8, 8% SDS, 0.04% bromophenol blue, 5% 

β-mercaptoethanol, 40% glycerol) and boiled for electrophoresis.  

 

Nuclear extraction 

Cell lysis was carried out in hypotonic buffer (50 mM Tris pH 8.0, 1 mM EDTA, 0.02% 

NP-40, 10% glycerol) containing protease inhibitors. Trypan blue was used to check 

nuclear isolation efficiency. Once 90% cell lysis efficiency was achieved, the whole 

lysates were spun at 2,400 rpm for 3 min at 4 ºC. The supernatants were removed and 

used as a hypotonic cytoplasm fraction. The intact nuclear pellets were washed one time 
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with hypotonic buffer. The nuclei were lysed with RIPA buffer (50 mM Tris pH 8.0, 150 

mM NaCl, 0.1% SDS, 0.5% Na deoxycholate, 1% NP-40) with protease and phopshotase 

inhibitors. After 5 min of nuclear lysis, the samples were spun at 15,000 rpm for 5 min at 

4 ºC. The supernatants were separated and used as a detergent-soluble nuclear fraction. 

 

λ-Phosphatase treatment 

After the fours washes of the immunoprecipitation protocol, the beads were washed two 

times with the Tris-NaCl buffer (25 mM Tris pH 7.4, 50mM NaCl) and divided equally 

for each condition indicated. The beads were than incubated with the reaction mix (25 

mM Tris pH 7.4, 50mM NaCl, 0.1 mM MnCl2, 1X NEB buffer PMP) with or without 1 

µl of λ-phosphatase (New England Biolabs, P0753, 400 U) for 30 min at 30 ºC. The 

immunoprecipitates were eluted with 2X Laemmeli buffer were eluted with 2X 

Laemmeli buffer. 

 

Chromatin immunoprecipitation 

Cells were collected, washed with PBS two times and cross-linked with 1% 

formaldehyde for 5min. Next, cross-linked cells were treated with 125 mM glycine for 5 

min, washed with PBS once and lysed with the lysis buffer (0.2% NP-40, 100 mM Tris-

HCl pH8, 10 mM NaCl) on ice for 10 min. The cells were centrifuged at 2500 rpm for 

5min at 4 °C, and the cell pellets were re-suspended with nucleus lysis buffer (0.1% SDS, 

50 mM Tris-HCl pH8, 10 mM EDTA) followed by sonication using the Covaris S220 
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system (Thermo Fisher Scientific, #4465653) according to the manufacturer’s protocol. 

After the sonication, the nucleus lysates were centrifuged at 13,000 rpm for 5 min at 4 °C 

and the supernatants were collected. Next, 10 µl of Dynabeads Protein A (Life 

Technology, #10001D) were incubated with 1 mg/ml of BSA for 1 hour at 4 °C and 30 µl 

of Dynabeads were incubated with 5 µg of antibodies at 4 °C for 4 hours. The sonicated 

nuclear lysates (300µl) were incubated with 10 µl of BSA-blocked Dynabeads for 3 hours 

at 4 °C. These pre-cleared nuclear lysates (300µl) was incubated with 30 µl of antibody-

conjugated Dynabeads overnight with addition of 700 µl of IP buffer (0.01% SDS, 1% 

TritonX-100, 20 mM Tris-HCl pH8, 2 mM EDTA, 150 mM NaCl). The Dynabeads were 

washed two times each with low salt IP wash buffer (0.01% SDS, 1% TritonX-100, 20 

mM Tris-HCl pH8, 2 mM EDTA, 50 mM NaCl), with medium salt IP wash buffer 

(0.01% SDS, 1% TritonX-100, 20 mM Tris-HCl pH8, 2 mM EDTA, 300 mM NaCl), and 

with high salt IP wash buffer (0.01% SDS, 1% TritonX-100, 20 mM Tris-HCl pH8, 2 

mM EDTA, 500 mM NaCl). Then, the Dynabeads were washed with LiCl buffer (1% 

NP-40, 1% deoxycholic acid, 10 mM Tris-HCl pH8, 1 mM EDTA, 0.25 M LiCl) and 

with TE buffer (10 mM Tris-HCl pH8, 1 mM EDTA) one time each. The chromatin 

reverse cross-linking and DNA elution were performed using IPure kit (diagenode, 

C03010015) according to the manufacturer’s protocol. 

 

Xenograft experiments 

NOD/SCID/IL2Rγ−/− (NSG) mice were purchased from the Jackson Laboratory. For 

KLHL6 experiment, NSG mice (6-8 weeks old) were injected sub-cutaneously with 
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1x107 U2932 KLHL6-/- (clone-derived) cells re-expressing either with KLHL6 (WT), 

KLHL6 (S94I) or empty vector (EV). For Roquin2 experiment, NSG mice were injected 

sub-cutaneously with 1x107 U2932 cells infected with retroviruses encoding HA-

Roquin2 (WT) or HA-Roquin2 (Y691F). Tumor volume and weight was monitored 

weekly by palpation and eye inspection and measured with caliper and analytical scale. 

All animal work was performed following the ethical guidelines and protocols approved 

by the Institutional Animal Care and Use Committee of the University of Pennsylvania.   

 

KLHL6 complexes purification for mass spectrometry 

HEK293T and ARP-1 cells stably expressing FLAG-tagged KLHL6 (WT) or FLAG-

tagged KLHL6 (L65P) were collected and lysed in lysis buffer (50 mM Tris-HCl pH 7.5, 

150 mM NaCl, 1 mM EDTA, 50 mM NaF, 0.5% NP40) with protease and phosphatase 

inhibitors. Flag-KLHL6 (WT) or Flag-KLHL6 (L65P) was immunoprecipitated with anti-

FLAG agarose beads and washed five times with lysis buffer and proteins were eluted 

with FLAG peptides. 1% of protein eluates were separated by SDS-PAGE and stained by 

Silver Staining (Life Technology). The final eluates were precipitated with trichloroacetic 

acid (TCA) for mass spectrometry analysis. 

 

In vitro binding assays 

In vitro-translated FLAG-tagged KLHL6 was incubated with indicated amounts of 
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Roquin2 peptides in lysis buffer (50 mM Tris-HCl pH 7.5, 250 mM NaCl 0.1% Triton X-

100, 1 mM EGTA). Anti-streptavidin resin was added to the samples and incubated at 

4°C for 2hrs with rotation. Samples were washed three times with the lysis buffer, and 

protein complexes were eluted in Laemmli buffer. For another binding experiment, 

HEK293T cells stably expressing KLHL6 (WT) were lysed with the lysis buffer and the 

whole cell lysates were incubated with anti-streptavidin resin and the peptides. The 

protein complexes were eluted in Laemmli buffer.  

 

In vitro and in vivo ubiquitylation assay 

For in vitro ubiquitylation assay, FLAG-KLHL6 or FLAG-KLHL6/HA-Roquin2 

complex were immunoprecipitated from HEK293T cells with anti-FLAG agarose beads. 

The purified proteins on the beads were incubated with 10 µl of ubiquitylation mix (50 

mM Tris pH 7.6, 5 mM MgCl2, 2 mM ATP, 1.5 ng/µl E1 (Boston Biochem), 10 ng/µl 

Ubc3, 10 ng/µl Ubc5, 2.5 µg/µl ubiquitin (Sigma), 1 µM ubiquitin aldehyde). The 

ubiquitylation reactions were incubated at 37°C for the indicated time points and 

subjected to SDS-PAGE analysis. When indicated, upon ubiquitylation reaction, beads 

were re-suspended in 1% SDS, boiled, and diluted to 0.1% SDS. The eluted proteins were 

immunoprecipitated with anti-FLAG agarose beads, washed, and eluted in Laemmli 

buffer. For in vivo ubiquitylation assay, U2932 KLHL6+/+ and KLHL6-/- (clone-derived) 

cells were pre-treated with or without MG132 for 6hrs before cell lysis with 1% SDS and 

incubated in 95°C for 5 min. Then, the cell lysates were diluted to 0.1% SDS in NP-40 

buffer and immunoprecipated using a polyclonal antibody against Roquin2. The 
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immunocomplexes were subjected to SDS-PAGE analysis. 

 

Transient transfections, generation of viruses for infection, and electroporation 

Polyethylenimine (PEI) was used for transient transfection in HEK293T cells.  For 

retrovirus and lenvirius production, GP-293 packaging cells (Clontech) or pCMV-

DeltaR8.2 were used respectively. After 48 hours of transfection, the virus-containing 

medium was collected, filtered, and used to spin-infect the cells at 1800 rpm for 30 

minutes. 10 µg/ml of polybrene was added to the cells with virus supernatant and 

incubated with six hours to overnight. RCK8 cells were electroporated using Neon 

transfection system according to manufacture’s protocol with LentiCRISPRv2 vector 

carrying a GFP marker. Transfected cells were sorted by GFP positive cells. siRNA 

oligos transfection was also performed with Neon transfection system according to 

manufacture’s protocol. 

 

Generation clonal KLHL6-/- cell lines 

U2932 or OCI-LY10 Cas9-expressing cells were infected with lentiviruses encoding 

gRNAs targeting KLHL6 gene. After puromycin selection, cells were plated at a 

concentration of 0.5 cells/well in a 96 well plate and a single cell was grown and 

screened for KLHL6 knockout.  

 

Plasmids, cloning, shRNA, gRNA, and siRNA sequences 
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Dr. Carola Vinuesa kindly provided human Roquin1 and Roquin2 cDNA and we sub-

cloned Roquins into different vectors: pcDNA3.1-FLAG, pcDNA3.1-HA or pcDNA3.1-

FLAG-Streptavidin. Human KLHL6 cDNA was purchased from Dharmacon and we sub-

cloned into different vectors: pcDNA3.1-FLAG, pcDNA3.1-FLAG-Streptavidin, and 

pREV-TRE. QuikChange Site-directed Mutagenesis kit (Stratagene) was used to generate 

C-terminal deletion mutants and point mutants of Roquin2. Standard PCR methods were 

used to generate N-terminal deletion mutants. The pcDNA3.1 V5-PTPN14 (#61003) 

vector was purchased from Addgene. Dr. Elizabeth White kindly provided all MSCV-N-

term V5-tagged PTPN14 deletion mutants. cDNAs encoding FLAG-tagged or HA-tagged 

KLHL6 and KLHL6 mutants were sub-cloned into MIGR1 retroviral vector and pREV-

TRE vector. cDNAs encoding FLAG-HA-tagged or untagged Roquin2 and Roquin2 

mutants were sub-cloned into pBabe Puro or pMSCV retroviral vector. shRNAs targeting 

human KLHL6 were sub-cloned into pSicoR-Puro lentiviral vector. shRNAs targeting 

human Roquin2 were sub-cloned into pSicoR-GFP lentiviral vector. KLHL6 cDNA and 

HA-tagged PTPN14 cDNA were sub-cloned into pTRIPZ vector. 

 

The target sequences to knock-down human KLHL6: 

hKLHL6_shRNA#1: 

For:TGCAGCCAGCAACTATTTCATTCAAGAGATGAAATAGTTGCTGGCTGCTT

TTTTC 

Rev:TCGAGAAAAAAGCAGCCAGCAACTATTTCATCTCTTGAATGAAATAGTT
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GCTGGCTGCA 

hKLHL6_shRNA#2: 

For:TGAAGCCTTGAACCCAGAAATTCAAGAGATTTCTGGGTTCAAGGCTTCTT

TTTTC 

Rev:TCGAGAAAAAAGAAGCCTTGAACCCAGAAATCTCTTGAATTTCTGGGTTC

AAGGCTTCA 

hKLHL6_shRNA#3: 

For:TGCATGATGTTTGGAAATATTTCAAGAGAATATTTCCAAACATCATGCTTT

TTTC 

Rev:TCGAGAAAAAAGCATGATGTTTGGAAATATTCTCTTGAAATATTTCCAAA

CATCATGCA 

hKLHL6_shRNA#4: 

For:TGGATTCAGATTGAGTATTTTTCAAGAGAAAATACTCAATCTGAATCCTTT

TTTC 

Rev:TCGAGAAAAAAGGATTCAGATTGAGTATTTTCTCTTGAAAAATACTCAAT

CTGAATCCA 

 

The target sequences to knock-down human Roquin2: 

hRoquin2 shRNA#1: 
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For:TGCAGTTGTCTGCCAATCTATTCAAGAGATAGATTGGCAGACAACTGCTT

TTTTC 

Rev:TCGAGAAAAAAGCAGTTGTCTGCCAATCTATCTCTTGAATAGATTGGCAG

ACAACTGCA 

 

hRoquin2 shRNA#2: 

For:TGGACTCAGATACCCTTTGATTCAAGAGATCAAAGGGTATCTGAGTCCTT

TTTTC 

Rev:TCGAGAAAAAAGGACTCAGATACCCTTTGATCTCTTGAATCAAAGGGTA

TCTGAGTCCA 

gRNAs targeting human KLHL6 were sub-cloned into Lenti-Guide-Puro vector, Lenti-

Guide-GFP and LentiCRISPRv2 vector. The target sequences to knockout human 

KLHL6:  

 

hKLHL6_gRNA#2       For: CAGAGCGTTTTCCATTCGCA 

               Rev: TGCGAATGGAAAACGCTCTG 

hKLHL6_gRNA#3       For: TCAGAGCGTTTTCCATTCGC 

 Rev: GCGAATGGAAAACGCTCTGA 

hKLHL6_gRNA#4       For: AAAGGTCAAATTTGACGACG 
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                                   Rev: CGTCGTCAAATTTGACCTTT 

hKLHL6_gRNA#5       For: GACTTGGTCGAGATCTTAAA  

                          Rev: TTTAAGATCTCGACCAAGTC 

hKLHL6_gRNA#6       For: ACTTGGTCGAGATCTTAAAT 

 Rev: ATTTAAGATCTCGACCAAGT 

 

siRNA duplexes were ordered from Dharmacon.  

The target sequence for human KLHL6 siRNA: GCACGAAGGAUGAACGGUU  

The target sequence for human Roquin2 siRNA: GCUUGAAAAGUAUCGAUUA  

Non-targeting siRNA control sequence: UGGUUUACAUGUCGACUAA  

 

mRNA Analysis and q-PCR primers 

RNeasy Kit (Qiagen) and trizol (Invitrogen) were used for extracting RNA. Maxima first 

strand cDNA synthesis kit (Thermo Fisher) and RNA to cDNA Ecodry Premix kit 

(Clontech) were used for cDNA synthesis. Quantitative PCR analysis with SYBR Green 

PCR Master Mix (Applied Biosystems) was carried out according to standard procedures.  

Primer sequences used for q-PCR analysis:  
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hGAPDH      FOR: 5’ GGAGCGAGATCCCTCCAAAAT 3’ 

                     REV: 5’ GGCTGTTGTCATACTTCTCATGG 3’ 

hTNFAIP3    FOR: 5’ TCCTCAGGCTTTGTATTTGAGC 3’ 

                     REV: 5’ TGTGTATCGGTGCATGGTTTTA 3’ 

hTNFRSF14 FOR: 5’ CCACTGGGTATGGTGGTTTC 3’ 

  REV: 5’ TCACCTTCTGCCTCCTGTCT 3’ 

hTNF            FOR: 5’ CTGCACTTTGGAGTGATCGGC3’ 

REV: 5’ CACCAGCTGGTTATCTCTCAGCTCC 3’ 

hNFKBIE       FOR: 5’ TCTGGCATTGAGTCTCTGCG 3’ 

  REV: 5’ AGGAGCCATAGGTGGAATCAG 3’ 

hLTA             FOR: 5’ GCTGCTGGTTCTGCTGCC 3’  

REV: 5’ CAAGGAGAAACCATCCTGGAGGAAG 3’ 

hNEDD4L FOR: 5’ ACTTCCTCCTCCTCCTCTGC 3’  

 REV:  5’ TCCAAGTCTTCGCTGATGTG 3’  

hABLIM1 FOR: 5’ ACTGCATCTCTCCCTGGCTA 3’  

 REV: 5’ TGTTGGTCACCATGAGCATT 3’  

hSYNGAP1  FOR: 5’ TCTGAGGAAAACTGCGAGGT 3’  
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 REV: 5’ GCAAACACCTCCTTCAGCTC 3’  

hNEIL2  FOR: 5’ GCCTCCACAAAAAGAAGTGC 3’  

REV: 5’ TTGTTGGCTTTCTTGGCTCT 3’ 

hLGALS8 FOR: 5’ CTGGGCATTTATGGCAAAGT 3’  

 REV:  5’ GACAGTTCTGGGTGCGATTT 3’  

hCD274  FOR: 5’ TATGGTGGTGCCGACTACAA 3’  

REV: 5’ TGCTTGTCCAGATGACTTCG 3’ 

hKLHL6        FOR: 5’ GCAGCCAGCAACTATTTCAGG 3’  

                     REV: 5’ ACGTGTAGTCCAACAGAGTGT 3’ 

hNFKBIA      FOR: 5’ TATAAACGCTGGCTGGG 3’  

                     REV: 5’ CCCTAGTGGCTCATCGC 3’ 

 

Normalization and quantification of protein levels 

Protein concentrations of whole cell lysates were quantified using a Bio-Rad DC protein 

assay (Lowry assay) according to the manufacturer’s protocol. Equal amounts of protein 

(~15µg) were loaded for SDS-PAGE analyses. Additionally, equal amount of protein 

levels was confirmed by staining the membraine with Ponceau S and by immunoblotting 

for a normalization control.  
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Cell proliferation assay 

For MTS cell proliferation assay, 2 x 103 cells were used according to manufacturers’ 

protocols. For the long-term cell proliferation assay, ~ 5x104-2x105 cells were plated, 

counted and re-plated every 3-5 days and cumulative cell numbers were graphed.  

 

Flow cytometry  

Flow cytometry was performed using Attune NxT Flow Cytometer and following 

channels were used: FITC for GFP-expressing cells, Alexa-680 AnnexinV to detect 

apoptosis, FITC to detect IgM or APC to detect IgG staining. All stainings were 

performed according to manufacturers’ protocols. To measure shRNA or gRNA effects 

on cell proliferation and survival, 5x105 cells were spin-infected with 1000 µl lentivirus 

supernatant with the addition polybrene (8µg/ml) in a 24-well plate. After the spin-

infection, the supernatant was removed and replaced with regular medium and the 

percentage of infected cells was measured from day 2 when GFP was visible in the 

infected cells. The number of alive GFP-positive cells on day 2 was set to 100% to 

normalize for transduction efficiency and every consecutive assessment was calculated 

based on day 2. When indicated, AnnexinV positive cells were gated on GFP positive 

cells.  
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MudPIT analysis 

TCA-precipitated proteins were urea-denatured, reduced, alkylated and digested with 

endoproteinase Lys-C (Roche) and modified trypsin (Roche), as previously described 

(Florens and Washburn, 2006; Washburn et al., 2001). Peptide mixtures were loaded onto 

100-µm fused silica microcapillary columns packed with 5-µm C18 reverse phase (Aqua, 

Phenomenex), strong cation exchange particles (Luna, Phenomenex), and reverse phase 

(McDonald et al., 2002). Loaded microcapillary columns were placed in-line with a 

Quaternary Agilent 1100 series HPLC pump and a LTQ linear ion trap mass spectrometer 

equipped with a nano-LC electrospray ionization source (Thermo Scientific). Fully 

automated 10-step MudPIT runs were performed on the electrosprayed peptides, as 

previously described (Florens and Washburn, 2006). Tandem mass (MS/MS) spectra 

were analyzed using SEQUEST (Eng et al., 1994) against a database of 61,318 

sequences, consisting of 30,449 non-redundant human proteins (downloaded from NCBI 

on 2012-08-27, 160 usual contaminants (such as human keratins, IgGs and proteolytic 

enzymes), and, to estimate false discovery rates, 30,659 randomized amino-acid 

sequences derived from each non-redundant protein entry. Peptide/spectrum matches 

were sorted and selected using DTASelect with the following criteria set: spectra/peptide 

matches were only retained if they had a DeltCn of at least 0.08 and a minimum XCorr of 

1.8 for singly-, 2.0 for doubly-, and 3.0 for triply-charged spectra. Additionally, peptides 

had to be fully tryptic and at least seven amino acids long. Combining all runs, proteins 

had to be detected by at least two such peptides, or one peptide with two independent 

spectra. Under these criteria the final FDRs at the protein and spectral levels were 



www.manaraa.com

 
 

40 

2.1%±0.3 and 0.94%  ±  0.03, respectively. Peptide hits from multiple runs were compared 

via CONTRAST (Tabb et al., 2002). Normalized Spectral Abundance Factors (NSAFs) 

were calculated for each detected protein, as previously described (Florens et al., 2006; 

Paoletti et al., 2006; Zybailov et al., 2006). 

 

Analysis of KLHL6 expression in DLBCL patients 

Raw DNA copy number data from high-resolution single nucleotide polymorphism 

(SNP) microarray analysis of 609 primary DLBCL tumors were used from a previously 

published study (Green et al., 2014). The data were visualized via the integrative 

genomics viewer (IGV) (Robinson et al., 2011). Cases were sorted by their KLHL6 copy 

number status, and those with copy number <1.8 were classified as a deletion, as 

previously described criteria (Monti et al., 2012). Gene expression microarray from 249 

tumors with matched DNA copy number data were from a previously published study 

(Green et al., 2014). Their cell of origin subtype was determined via the Wright algorithm 

(Wright et al., 2003), as previously reported (Monti et al., 2012). Row normalized 

heatmaps for 4 probe sets corresponding to KLHL6 were sorted according to their 

average expression, and significant reduction in KLHL6 expression defined as being 1 

standard deviation below the mean. Raw cel files for publicly available Affymetrix U133 

plus 2.0 gene expression microarray data for diffuse large B-cell lymphoma tumors 

(GSE10846, GSE34171, GSE31312) were obtained from the gene expression omnibus. 

Data were RMA normalized using the ExpressionFileCreator module of GenePattern 
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(Reich et al., 2006). Scores to categorize diffuse large B-cell lymphoma tumors by cell of 

origin subtype were calculated according to the Wright algorithm (Wright et al., 2003). 

Intensities from the 4 probes for KLHL6 (1555275_a_at, 1560396_at, 1560397_s_at, 

228167_at) were averaged for use in the survival analysis. Cases were dichotomized into 

being above or below the median expression level of KLHL6 expression within each 

dataset to avoid confounding batch effects. For NF-κB signatures, Affymetrix U133 plus 

2 gene expression microarrays were performed on 84 matched DLBCL tumors (Green et 

al., 2014; Lenz et al., 2008f). Raw cel files were RMA normalized with median scaling 

using the ExpressionFileCreator module of GenePattern (Reich et al., 2006). Sample-

level enrichment of NF-κB target genes was calculated using the single sample gene set 

enrichment analysis (Barbie et al., 2009) and the c3 TFT gene set database of mSigDB 

(Liberzon et al., 2011). 

 

RNA sequencing 

Total RNA was extracted using RNeasy Mini Kit (QIAGEN, #74104) and polyA+ 

transcripts were obtained with oligo (dT)25-conjugated magnetic Dynabeads (Thermo 

Fisher). Preparation of strand specific RNA-seq libraries were carried out according to a 

published protocol (Parkhomchuk et al., 2009). In short, RNA was fragmented 

chemically in first strand buffer, converted to cDNA utilizing SuperScript® III reverse 

transcriptase (Invitrogen), end-repaired, A-tailed and ligated to custom-designed 

universal adapters utilizing an end-repair mix, klenow fragment, and T4 DNA ligase (all 
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from Enzymatics). After the ligation step, adapters were removed by SPRI purification 

utilizing SPRIselect beads (Beckman coulter) and amplified with Q5 Hot Start DNA 

polymerase (New England Biolabs) while introducing custom dual indexes. Three 

biological replicates were used to sequence on a NextSeq 500 (Illumina) at a depth of at 

least 2x107 reads each. Reads were mapped and analyzed via a custom bioinformatic 

pipeline based on STAR (Dobin et al., 2013), SAMTOOLS (Li et al., 2009), and the R 

packages DEGseq (Wang et al., 2010) and DEseq2 (Love et al., 2014). We used human 

genome version GRCh38 and gene annotations from the ENSEMBL release 83. GO 

analyses were performed using version 6.8 of the DAVID web server (Huang et al., 

2009a, c). 

 

CHIP sequencing 

The previously published data were obtained from the NCBI's Gene Expression Omnibus 

(Zhao et al., 2014) and they are accessible through GEO at Series accession numbers 

GSE55105. FASTQs were downloaded and mapped to hg19 with bowtie2 (v2.1.0). 

Genome browser tracks were generated using custom scripts. When available, biological 

replicates were merged by taking the mean of the reads density at each position. The data 

were visualized via the integrative genomics viewer (IGV) (Robinson et al., 2011).  

 

Statistics and reproducibility  

Mean values with error bars indicating standard deviation (s.d.) were shown in the 

graphs. Unless otherwise noted, all the experiments were successfully repeated at least 
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three times. One-tailed t-test, two-tailed t-test, one-way or two-way ANOVA was 

performed as indicated in the figure legends. DEseq2 was performed for RNA-seq 

analysis in Fig. 4.3b and Table 4.1. Weighted Exclusivity Test (WExT) was performed 

for Table 4.3. Mantel-Cox was performed for survival analysis in Fig. 4.1l. Pearson 

Correlation Coefficient was used in Fig. 3.5b.  
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CHAPTER 3 : BIOCHEMICAL ANALYSIS OF KLHL6 AND ROQUIN2 AS AN 

E3 LIGASE-SUBSTRATE PAIR 

 

Chapter Summary 

 Research described in this chapter was performed in collaboration with the 

laboratories of Dr. Michael Washburn and Dr. Michael Green. Mass Spectrometry (MS) 

sample preparations were carried out in our laboratory, and MS analysis was performed 

by Anita Saraf and Laurance Florens in Dr. Michael Washburn lab (Stowers Institute). 

Re-analysis of published SNP array data and KLHL6 transcript expression in DLBCL 

tumors were performed in collaboration with Saber Tadros, a graduate student in Dr. 

Michael Green lab (MD Anderson Cancer Center).  

 The work described here forms the body of a manuscript that is currently accepted 

at Nature Cell Biology. This chapter is heavily focused on biochemical approaches to 

understand KLHL6 as a CULLIN3-RING-ubiquitin Ligase for Roquin2 protein and is 

written and arranged differently from the original manuscript.  

 

Jaewoo Choi, Kyutae Lee, Kristin Ingvarsdottir, Roberto Bonasio, Anita Saraf, Laurence 

Florens, Michael P. Washburn, Saber Tadros, Michael R. Green, and Luca Busino. Loss 

of KLHL6 promotes diffuse large B-cell lymphoma growth and survival by stabilizing 

the mRNA decay factor Roquin2 
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Introduction 

Kelch-like protein 6 (KLHL6) is a highly conserved and uncharacterized BTB-

Kelch protein with a lymphoid tissue-restricted expression pattern (Gupta-Rossi et al., 

2003). Although expressed at all stages of B-cell development, Klhl6 levels are highly 

up-regulated in sheep Peyer’s patch, human tonsil B cells and germinal center (GC) B-

cells, suggesting a functional relevance in GC reaction (Kroll et al., 2005). In line with 

this expression profile, Klhl6-/- mice fail to mount a full GC formation in vivo (Kroll et 

al., 2005). Recently, whole-genome and exome sequencing have revealed cancer-

associated mutations of the KLHL6 gene in mature B-cell malignancies, including diffuse 

large B-cell lymphoma (DLBCL) (Lohr et al., 2012; Morin et al., 2011). The somatic 

mutations tend to localize to the N-terminus of the protein, namely the BTB domain and 

the relevance of these mutations or the molecular function of KLHL6 is currently not 

known. The BTB protein family can be sub-divided into BTB-BACK-Kelch (BBK), 

MATH-BTB, BTB-NPH3, Kelch repeat and BTB-domain containing proteins (KBTBD), 

BTB-zinc finger (BTB-ZF), and Kelch family (KLHL)(Pintard et al., 2004). Many of 

these BTB proteins interact with CULLIN3, but not with other CULLIN scaffold 

proteins, to induce ubiquitination of target proteins involved in a variety of biological 

processes such as cell cycle regulation, oxidative stress, and others (Anderica-Romero et 

al., 2013). Although approximately 500 BTB-domain proteins have been identified, little 

is known about the physiological and molecular functions of these proteins. 

The Roquin family of proteins consists of Roquin1 (Rc3h1) and Roquin2 

(Rc3h2). The N-terminal region of Roquin proteins comprises a RING finger, a 
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conserved ROQ domain, and a CCCH-type zinc finger (Vinuesa et al., 2005). 

Specifically, mRNAs that display a 3’ UTR sequence conserved a stem-loop motif, called 

a constitutive-decay element (CDE), which are recognized by the ROQ domain of 

Roquin1 and 2 (Leppek et al., 2013; Schlundt et al., 2014; Tan et al., 2014). Upon 

recognition, Roquin proteins recruit the mRNA decapping and deadenylation complexes 

through their C-terminal effector domains leading to the destabilization of their target 

mRNAs. CDEs are reported to be highly conserved in the 3’ UTRs of more than 50 

vertebrate genes, suggesting that CDE is a ubiquitous regulatory element (Leppek et al., 

2013). Genome-wide identification of Roquin targets by crosslinked-

immunoprecipitation (CLIP)-Seq revealed that many mRNAs associated with the roquin 

encode for proteins are important for immunity, inflammation, and development (Leppek 

et al., 2013). Accordingly, in the context of lymphocyte biology, tissue-specific ablation 

of Roquin1 in T cells causes expansion of CD8 effector-like T cells with up-regulation of 

essential T-cell co-stimulatory receptor, ICOS, which is a well-known target for Roquin 

proteins (Bertossi et al., 2011; Glasmacher et al., 2010; Yu et al., 2007). Mice with a T-

cell-specific combined deficiency of Roquin1 and Roquin2 exhibit lymphadenopathy and 

splenomegaly with spontaneous development of follicular T-helper cells (Tfh) and GC B- 

cells, suggesting the function of these cells in the control of T-cell activation and Tfh 

differentiation. This autoimmunity phenotype is partially caused by elevated levels of 

ICOS.  

Many studies defining the role of Roquin proteins have focused on T-cell biology 

and T-cell differentiation. Recent studies on the regulation of Roquin protein stability 
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have suggested that it is regulated by the paracaspase MALT1 (Jeltsch et al., 2014). 

Stimulation of wild-type CD4+ T cells by the pharmacological agents PMA and 

ionomycin mimic for activation of T-cell receptor and co-stimulation causes the cleavage 

of Roquin proteins by MALT1 and this phenomenon is blocked by the specific peptide 

inhibitor z-VPR-fmk. Both Roquin1 and Roquin2 are cleaved and inactivated to control 

post-transcriptional targets for promoting TH17 differentiation. However, the regulation 

of Roquin protein abundance in B-cell biology has not been investigated. 

Based on a proteomic analysis of the purified KLHL6 complex, we show that 

KLHL6 assembles a functional multi-subunit E3 ligase based on CULLIN3. We have 

found that binding CULLIN3 to KLHL6 requires an intact BTB-domain and the cancer-

associated mutations of KLHL6 inhibit its ubiquitin ligase activity by disrupting this 

interaction. Furthermore, we have identified Roquin2 as a novel substrate and found that 

the integrity of a specific tyrosine residue (Y691) in Roquin2 is crucial for KLHL6 

binding. In addition, degradation of Roquin2 is dependent on B-cell receptor activation. 

These findings identify KLHL6 as the E3 ligase for Roquin2 and can provide critical 

evidence and implements to uncover the connection between the ubiquitin proteasome 

system and mRNA decay in B-cell cancers.  

 

 

Results 

Cancer-associated mutations of KLHL6 in B-cell malignancies 
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KLHL6 is a lymphoid-tissue expressed gene (Gupta-Rossi et al., 2003; Kroll et al., 

2005) with uncharacterized function. Mutations of the KLHL6 gene were observed in 

DLBCL (http://cancergenome.nih.gov/ and (Idoia et al., 2016; Lohr et al., 2012; Morin et 

al., 2011; Reddy et al., 2017), chronic lymphocytic leukemia (CLL) (Puente et al., 2015) 

and multiple myeloma (MM) (Lohr et al., 2014) (Fig. 3.1A) via analysis of genomic 

databases of B-cell cancer patients. DLBCL cohorts from UNMC, TCGA and CMSGSC 

revealed the highest rate of genetic mutations with 10%, 14.5%, and 12.5%, respectively 

(Fig. 3.1A), which are stratified in a similar rate amongst GCB-DLBCL, ABC-DLBCL 

and uncharacterized DLBCL (Fig. 3.1B). Majority of the cancer-associated mutations are 

missense and monoallelic mutations as non-sense and frameshift mutations exhibit a very 

low frequency (Fig. 3.1C, Table 3.1) (Idoia et al., 2016; Lohr et al., 2012; Morin et al., 

2011; Reddy et al., 2017). Most of mutations occur near and inside the BTB-domain of 

KLHL6, and the residues Leucines 65 and 90 of KLHL6 are mutational hotspots as 

shown (Fig. 3.1C). Additionally, infrequent deletion of the KLHL6 locus was observed 

upon re-analysis of previously published SNP array data (Green et al., 2014) (Fig. 3.1D). 

Gene expression microarray analysis showed that ~6% of DLBCL tumors have lower 

expression of KLHL6 transcript (Fig. 3.1E), suggesting that there might be possible role 

of transcriptional silencing as a way to inactivate KLHL6 function.  

 

KLHL6 assembles a CULLIN3-based E3 ligase 
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To gain insight into the molecular function of KLHL6 and to understand the 

impact of the cancer associated mutations, we first compared the protein interactome 

change between KLHL6 (WT) and the cancer mutant KLHL6 (L65P). FLAG-KLHL6 

(WT) or FLAG-KLHL6 (L65P) complexes were immunopurified from two different cell 

lines (HEK293T and ARP-1) and the tryptic digestion of each protein eluate was 

measured by mass spectrometry (Table 3.2). In the two cell lines, high unique spectral 

counts corresponding to CULLIN3 were identified in KLHL6 (WT) immunoprecipitates 

as opposed to none in the KLHL6 (L65P) purifications (Fig. 3.2A and Table 3.2), 

indicating that CULLIN3 is a novel KLHL6 binding partner and that a hotspot BTB-

domain mutation of KLHL6 (L65P) abolishes this interaction.   

To validate the mass spectrometric analyses, we expressed and 

immunoprecipitated FLAG-tagged KLHL6 from HEK293T cells and confirmed 

interaction with endogenous CULLIN3 (Fig. 3.2B), similarly to the established 

CULLIN3 interactor IBTK (Bennett et al., 2010) (Fig. 3.2B). KLHL14 was used as a 

negative control of a BTB-containing protein that did not interact with CULLIN3. In 

contrast, CULLIN1 was detected in FBXW7 and FBXL15 immunoprecipitations (Fig. 

3.2B), as previously shown (Busino et al., 2012; Cui et al., 2011), but not in association 

with KLHL6, suggesting that KLHL6 specifically assembles a CULLIN3-based ubiquitin 

ligase complex.   

To determine whether KLHL6 is capable of catalyzing polyubiquitylation, we 

carried out an in vitro ubiquitylation assay where we incubated purified KLHL6 (WT) or 

KLHL6 (ΔKelch), a deletion mutant that contains only the BTB-domain, with a 
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ubiquitylation mix consisting of E1 enzyme, Ubch5a (E2) enzyme, ATP and ubiquitin.  

As expected, KLHL6 promoted self-ubiquitylation, and, notably, its BTB-domain alone 

was sufficient in catalyzing self-polyubiquitylation to a higher degree as recognized by an 

antibody specific to K-48 linked ubiquitin chains (Fig. 3.2C). These data revealed that the 

KLHL6 complex catalyzes ubiquitin transfer in vitro, further supporting the notion of 

assembling a functional CULLIN3-RING ubiquitin Ligase (CRL3) (Lydeard et al., 

2013). 

 

BTB-domain mutations of KLHL6 abolishes its ligase activity 

Having established above that KLHL6 is a CRL3 ligase, we tested the effect of 

BTB-domain mutations on ligase assembly and activity. First, we confirmed our initial 

proteomic data by showing that the KLHL6 (L65P) mutant did not co-immunoprecipitate 

endogenous CULLIN3 (Fig. 3.3A). We also found that two other cancer mutants 

(KLHL6 (S94I) and KLHL6 (F97L)) did not interact with CULLIN3 (Fig. 3.3A).  

Secondly, we showed that mutations in the BTB-domain were sufficient in inhibiting 

self-polyubiquitylation in vitro (Fig. 3.3B), as a result of a loss of catalytic activity due to 

endogenous CULLIN3 dissociation. 

The latter findings prompted us to determine whether loss of KLHL6 self-

ubiquitylation would affect its turnover in cells.  To this end, we expressed KLHL6 (WT) 

or BTB-domain KLHL6 mutants (L65P, S94I and F97L) in OCI-LY10 KLHL6-/- and 

assessed protein half-life in cycloheximide (CHX) chase experiments (Fig. 3.3C).  
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Consistent with our in vitro findings, the protein levels of BTB-domain KLHL6 mutants 

were remarkably high at steady state and displayed extended half-lives as compared to 

that of KLHL6 (WT) (Fig. 3.3C). These results suggested that KLHL6 promotes auto-

ubiquitylation and degradation via CULLIN3 interaction (Fig. 3.3D).  

Together, our data show that (i) KLHL6 is a CRL3 that promotes self-

ubiquitylation and degradation, and (ii) cancer-associated mutations within the BTB-

domain abrogate the interaction with CULLIN3, resulting in the loss of ubiquitin ligase 

activity (Fig.3.3D) 

 

KLHL6 specifically interacts with Roquin2   

 Based on our previous findings, we hypothesized that the molecular function of 

KLHL6 is to ubiquitylate and degrade one or more substrates. Since KLHL6 (L65P) 

mutant is unable to promote ubiquitylation, we reasoned that it might trap (i.e. interact 

with, but not ubiquitylate or degrade) natural KLHL6 substrates offering an opportunity 

to identify them. Thus, we ranked the identified proteins by the number of unique spectral 

counts associated to KLHL6 (L65P) and compared them to KLHL6 (WT) (Fig. 3.4A and 

Table 3.2). Roquin2 was enriched in the KLHL6 (L65P) complex in both HEK293T cells 

and ARP-1 cells. Notably, Roquin1 was not detected, suggesting that KLHL6 interacts 

preferentially with Roquin2 (Fig 3.4A). 

To investigate whether the binding between Roquin2 and KLHL6 is specific, we 

screened a panel of human F-box proteins, as well as BTB-domain containing proteins 

(Fig. 3.4B). We found that only KLHL6 co-immunoprecipitated endogenous Roquin2 
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(but not Roquin1 despite its higher expression), in agreement with our mass spectrometry 

results (Fig. 3.4B). To further confirm this finding, we expressed FLAG-tagged Roquin1 

or Roquin2 in HEK293T cells stably expressing exogenous KLHL6 (HEK293T cells do 

not express KLHL6 at the endogenous level). Analysis of FLAG immunoprecipitates 

confirmed that Roquin2, but not Roquin1, interacted with KLHL6 (Fig. 3.4C). We also 

confirmed the endogenous KLHL6 and Roquin2 interaction in DLBCL cells (Fig. 3.4D). 

KLHL6 required an intact Kelch domain to interact with Roquin2 (Fig. 3.4E), further 

supporting substrate-like interaction between KLHL6 and Roquin2 (Lo et al., 2006). 

Consistent with the proteomic data, mutations in the BTB-domain did not affect binding 

of KLHL6 to Roquin2 (Fig. 3.4E).  

 

KLHL6 promotes ubiquitylation and degradation of Roquin2.   

To investigate whether KLHL6 regulates Roquin2 protein levels, we first 

analyzed Roquin2 abundance in a panel of DLBCL cell lines.  Interestingly, higher levels 

of KLHL6 protein in OCI-LY1, SUDHL4, SUDHL6 and U2932 cell lines correlated with 

lower levels of Roquin2 protein (Fig. 3.5A and 3.5B).  Inversely, lower levels of KLHL6 

protein in OCI-LY7, OCI-LY10, OCI-LY19, TMD8, HLB1, Pfeiffer, and Karpas422 cell 

lines correlated with higher levels of Roquin2 protein (Fig. 3.5A and 3.5B). We further 

assessed Roquin2 protein turnover by analysis of its half-life in two ABC-DLBCL cell 

lines (OCI-LY10 and U2932) (Fig. 3.5C and Fig. 3.5D respectively). In both cell lines, 

down-regulation of KLHL6 via siRNAs or ablation via gRNAs significantly extended 

Roquin2 half-life. Roquin1 half-life was not significantly changed upon KLHL6 down-
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regulation or ablation, further confirming that KLHL6 specifically promotes Roquin2 but 

not Roquin1 degradation (Fig. 3.5C and Fig. 3.5D).   

Gain of function experiments also confirmed that Roquin2 protein levels were 

negatively regulated by expression of KLHL6 using a doxycycline-dependent promoter 

in cell lines with low KLHL6 expression (i.e.; HEK293T and HBL1) (Fig. 3.5E).  

Moreover, overexpression of KLHL6 (WT), but not BTB-domain KLHL6 mutants, in 

OCI-LY8 (a DLBCL cell line with undetectable KLHL6 levels), induced Roquin2 down-

regulation (Fig. 3.5F), indicating that loss of function cancer-associated mutations of 

KLHL6 is incapable of promoting Roquin2 degradation.   

 To explore whether KLHL6 directly controls Roquin2 ubiquitylation in vitro, we 

purified KLHL6-Roquin2 complex from HEK293T cells by immunoprecipitations and 

incubated with a ubiquitylation mix. High-molecular species of Roquin2 were detected 

only upon incubation with the KLHL6 (WT) complex, but not with the KLHL6 (L65P) 

complex, suggesting that Roquin2 is conjugated with polyubiquitin chains in a 

CULLIN3-dependent manner (Fig. 3.5G). Furthermore, we investigated whether Roquin2 

ubiquitylation is regulated by KLHL6 in vivo. The K48-linked polyubiquitin chains of 

Roquin2 were only detected in KLHL+/+ cell lines, but not in KLHL6-/- cell lines (Fig. 

3.5H).  

Hence, we have shown that Roquin2 is the first identified bona fide substrate of 

the CRL3KLHL6 E3 ubiquitin ligase complex. 
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BTB-mutations of KLHL6 are not dominant-negative 

First, we utilized HEK293T cells stably expressing BTB-mutants of KLHL6. We 

infected these cells with lentiviruses encoding a doxycline (DOX) inducible expression of 

KLHL6 (WT) and found that the expression KLHL6 (WT) still promoted Roquin2 

degradation, suggesting these BTB-domain mutations of KLHL6 are not dominant 

negative (Fig. 3.6A).   

Next, we utilized B-cell lymphoma cell lines harboring endogenous KLHL6 

mutations. VAL cells harbor two endogenous BTB-mutations: N60T and T72R (Fig. 

3.6B). We found that only the KLHL6 (T72R) mutant lost interaction with CULLIN3 

(Fig. 3.6B) while KLHL6 (N60T) mutant was still able to interact. Interestingly, 

knockdown of KLHL6 in VAL cells did not have any effects on Roquin2 protein levels 

(Fig. 3.6C), suggesting that KLHL6 is not functional in VAL cells. Additionally, 

retroviral expression of KLHL6 (WT) in VAL cells still promoted degradation of 

Roquin2 (Fig. 3.6D), suggesting this mutation as non-dominant. In VAL cells, expression 

of KLHL6 at the mRNA level was comparatively low (Fig. 3.6E). Overall, this suggests 

that VAL cells display one KLHL6 allele inactivated by a mutation in the BTB-domain 

and an additional down-regulation of KLHL6 mRNA, a scenario suggestive of a loss of 

function. 

We have also analyzed the effect of KLHL6 mutations in SUDHL10 cells with 

two mutations (L24R and A25E). Both the KLHL6 (L24R) and KLHL6 (A25E) mutants 

retained interaction with CULLIN3, suggesting an intact KLHL6 function (Fig. 3.6B). 
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Indeed, knockdown of KLHL6 in SUDHL10 cells induced stabilization of Roquin2 (Fig. 

3.6C) and over-expression of KLHL6 WT had a minor effect on Roquin2 degradation, 

likely because endogenous KLHL6 is already functional (Fig. 3.6D). 

Taken together, our biochemical analyses on mutations suggest that the BTB-

domain mutations of KLHL6 do not have dominant-negative effects on KLHL6 (WT).  

 

Interaction between KLHL6 and Roquin2 requires a functional tyrosine residue Y691 in 

Roquin2 

 Next, we investigated the KLHL6 binding region in Roquin2 by performing an 

unbiased mutagenesis screening. To this end, we generated a set of C-terminal deletion 

mutants in Roquin2 and identified that a region between amino acids 640 and 700 is 

required for interaction with KLHL6 (Fig. 3.7A). Consistently, deletion of N-terminal 

residues up to amino acids 439 did not alter KLHL6-Roquin2 interaction (Fig. 3.7B). We 

performed more refined deletions and further narrowed down the interaction motif 

between amino acids 690 and 695 (Fig. 3.7C). By carrying out alanine scanning 

mutagenesis of the individual residues of Roquin2 from 691 to 704 region, we identified 

a specific and conserved tyrosine residue, in position 691. The single alanine mutation at 

this specific tyrosine completely abrogated the interaction between Roquin2 and KLHL6 

(Fig. 3.7D). In-vitro binding assays confirmed that a Roquin2 peptide containing the 

region from 686 to 700 directly interacts with KLHL6 (Fig. 3.7E-H). Further, mutations 

of tyrosine 691 into alanine (Y691A) or phenylalanine (Y691F) disrupts the ability of 
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Roquin2 to co-immunoprecipitate with KLHL6 both in vitro and in vivo. This suggests 

that the intact tyrosine hydroxyl group is required for the KLHL6-Roquin2 interaction 

(Fig 3.7G and I).   

 To determine whether tyrosine 691 controls Roquin2 stability in DLBCL cells, we 

retrovirally-transduced a DLBCL cell line, BJAB, with Roquin2 (WT) or Roquin2 

(Y691F). Strikingly, Roquin2 (Y691F) displayed increased protein levels at steady state 

as well as an extended half-life when compared to that of Roquin2 (WT) (Fig. 3.7J), 

suggesting that the integrity of tyrosine 691 controls Roquin2 protein turnover. To further 

validate this finding, we expressed KLHL6 (WT) or KLHL6 (L65P) in HEK293T cells 

and assessed the effect on Roquin2 protein levels. While Roquin2 (WT) was effectively 

down-regulated by the expression of KLHL6 (WT), Roquin2 (Y691F) was not (Fig. 

3.7K). Expression of KLHL6 (L65P) had no effects on protein levels of Roquin2 (WT) or 

Roquin2 (Y691F) (Fig. 3.7K).  

Collectively, these data show that tyrosine 691 in Roquin2 is required for 

KLHL6-mediated degradation of Roquin2 in DLBCL.   

 

KLHL6 promotes Roquin2 degradation upon BCR stimulation  

KLHL6 was shown to be involved in the B-cell Receptor (BCR) signaling and a 

part of BCR signalosome (Satpathy et al., 2015). Also, KLHL6 was induced upon antigen 

stimulation in the germinal center (Kroll et al., 2005), so we first investigated whether 

mRNA and protein levels of KLHL6 and Roquin2 were affected by BCR stimulation in 
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DLBCL cell lines. We first screened DLBCL cell lines for IgM or IgG surface expression 

(Fig. 3.8A). Consistent with previous findings, ABC-DLBCL cells predominantly 

express an IgM-BCR as opposed to GCB-DLBCL cells, which are positive for IgG-BCR 

(Lenz et al., 2007). Amongst the DLBCL cell lines screened, we analyzed levels of 

KLHL6 and Roquin2 in IgM-positive ABC- DLBCL cell lines (U2932, OCI-LY10 and 

HBL1) (Fig 3.8B). BCR activation using the fragment affinity-purified antibody F(ab’)2-

IgM induced up-regulation of KLHL6 and down-regulation of Roquin2 protein levels in 

OCI-LY10 and U2932, but not in HBL1, lacking KLHL6 mRNA and protein (Fig.3.8B). 

Thus, Roquin2 down-regulation upon BCR stimulation correlated with KLHL6 

expression in DLBCLs.   

To further prove that BCR-dependent down-regulation of Roquin2 protein in 

ABC-DLBCLs is controlled by CRLs, we pre-treated U2932 cells with MLN4924, a 

NEDD8-activating enzyme (NAE) inhibitor blocking neddylation of CULLINs 

(Milhollen et al., 2010). MLN4924 treatment rescued Roquin2 down-regulation induced 

by BCR-crosslinking, suggesting that a functional CRL-complex is necessary to promote 

degradation of Roquin2 (Fig. 3.8C). As a positive control, phosphorylation of ERK is 

shown to assess the efficacy of BCR-crosslinking. Notably, BCR stimulation induced 

KLHL6 up-regulation at transcriptional levels (Fig. 3.8D), revealing KLHL6 as a BCR-

signaling dependent gene. Consistently, BCR-crosslinking in both U2932 and OCI-LY10 

induced KLHL6 expression in a time and dose-dependent manner, which inversely 

correlated with Roquin2 protein levels (Fig. 3.8E and 3.8F). Furthermore, silencing the 

expression of KLHL6 via siRNA ablated F(ab’)2-IgM-induced Roquin2 degradation 
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(Fig. 3.8E and 3.8F), indicating that BCR-signaling promotes Roquin2 degradation in a 

KLHL6-dependent manner. BCR-induced Roquin2 degradation was also impaired in 

KLHL6-/- cells (Fig. 3.8G) 

Consistent with degradation of endogenous Roquin2, we found that exogenous 

Roquin2 (WT) was also degraded in a dose-dependent manner upon BCR stimulation 

(Fig 3.8H). In contrast, levels of Roquin2 (Y691F) mutant were higher already at steady 

state and unaffected by BCR stimulation, confirming that BCR-signaling induces 

KLHL6-mediated degradation of Roquin2. 

 

Discussion 

Our work uncovers, for the first time, uncovers a functional link between KLHL6 

and Roquin2 protein as an E3 ligase-substrate pair. KLHL6 is a BTB-Kelch domain 

protein mutated in human DLBCLs. BTB domain-containing zinc finger proteins and 

Kelch domain are evolutionarily conserved from Drosophila melanogaster to Homo 

sapiens (Adams et al., 2000; Siggs and Beutler, 2012). The common function of the 

BTB/Kelch domain is to facilitate protein binding and associated proteins control various 

biological processes such as transcription repression, protein degradation, and 

organization and binding of actin filaments, and cellular morphology (Albagli et al., 

1995; Kang et al., 2004; Melnick et al., 2000; Perez-Torrado et al., 2006). Somatic 

mutations localize to the BTB-domain with relevant hotspots at amino acid residue 65 

and 90 (Idoia et al., 2016; Lohr et al., 2012; Morin et al., 2011; Reddy et al., 2017). Most 
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KLHL6 genetic alterations in DLBCL contain monoallelic missense mutations and 

infrequent copy loss (Idoia et al., 2016; Lohr et al., 2012; Morin et al., 2011; Reddy et al., 

2017). It is likely that most of cancer-associated mutations KLHL6 are the consequence 

of aberrant hypersomatic mutation (Puente et al., 2011), similarly to those of BCL6 and 

MYC (Pasqualucci et al., 2001). More importantly, we have shown that the hotspot 

mutations and other deleterious BTB-domain mutations cause a dissociation of CULLIN3 

and loss of E3 ligase activity. Although cancer-associated mutations in the Kelch-

domain, which can serve as a substrate-binding domain, are observed in DLBCLs, 

mutation such as T440A is not able to disrupt binding of Roquin2 with KLHL6 

completely (Fig 3.4E). This observation suggests that somatic mutations in the BTB-

domain are more potent than the ones in the Kelch-domain in terms of disrupting the 

ligase activity and leading to substrate accumulation. This might be the reason that 

KLHL6 alterations in DLBCLs happen more frequently in the BTB-domain.  

Furthermore, we identified Roquin2 as the bona fide substrate of KLHL6.  

KLHL6 interacts specifically with Roquin2, ubiquitylates and triggers its degradation 

upon BCR stimulation. It is noticeable that Roquin1, which is a Roquin2 paralog and has 

highly similar amino acid sequence across RING, ROQ, and CCCH (C3H) domains 

(Pratama et al., 2013), is not a target of KLHL6. Indeed, the binding domain of KLHL6 

in Roquin2 is in the proline rich region, which has only about ~40% sequence similarity 

with Roquin1. Therefore, it is conceivable that this sequence difference only allows 

KLHL6 to recognize Roquin2 via tyrosine 691 residue. The Roquin-1 and Roquin-2 

proteins in T-cell activation and Tfh differentiation have been reported to be functionally 
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redundant as both can regulate and act together to degrade key mRNAs and control 

inflammation and autoimmunity such as ICOS and Ox40 costimulatory receptors and 

TNF (Vogel et al., 2013). These redundant functions serve as a critical safety mechanism 

for preventing cancer development and autoimmune diseases. However, systemic 

Roquin1 knockout mice are born with a caudal spine defect and impaired lung 

development, resulting in a poor perinatal survival (Bertossi et al., 2011), implying a role 

of Roquin1 in embryonic development that extends beyond the immune system. 

Moreover, systemic Roquin2 deficient mice are born at a Mendelian ratio, but very few 

individual mice reach adulthood. Notably, a large proportion of Roquin2 deficient mice 

died within the first few days after birth (Vogel et al., 2013). This suggests that Roquin1 

and Roquin2 redundancy varies in a cell-context dependent manner. Therefore, it is 

possible that, in B-cell biology where Roquin2 is specifically degraded by KLHL6, 

Roquin1 and Roquin2 might have a functional difference, adding new aspects of the 

regulation of Roquin proteins. 

Notably, cancer-associated mutations of KLHL6 in the BTB-domain are not 

dominant negative as KLHL6 (WT) is still able to degrade Roquin2 in the presence of 

these BTB-domain mutants. Moreover, N-terminal mutations outside of the BTB-domain 

do not disrupt the function of KLHL6, suggesting that it is mainly BTB-domain 

mutations that lead to loss of function. We have not investigated whether these BTB-

domain mutations affect the dimerization of KLHL6 and whether KLHL6 is functional in 

the dimer form. Indeed, SPOP, a MATH-BTB protein, generates a dimeric ubiquitin 

ligase to recognize a single substrate, and a dimerization defective SPOP mutant is not 
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able to promote ubiquitination of the substrate (Zhuang et al., 2009). Dimerization and 

conformational variability is an important factor to facilitate elongation of ubiquitin chain 

on the substrate and to provide a variety of orientation flexibility as previously shown by 

the SCF ligase, Cdc4 (Tang et al., 2007). The dimerization of Cdc4 affects the 

positioning of the substrate for the formation of the ligase complex rather than the affinity 

with its substrate. It is possible that KLHL6 works as a homodimer and mutations in the 

BTB-domain disrupt interaction between the wild-type KLHL6s in addition to disrupting 

the CULLIN3 association. Furthermore, we have not characterized the function of the 

BACK domain as no somatic mutations for this domain are found in KLHL6. It has been 

shown that single mutation in the BACK domain results in decreased efficiency of 

CULLIN3-KLHL7 ligase complex in autoimmune diseases (Kigoshi et al., 2011). How 

KLHL6 protein exists in cells in terms of its complex formation and whether the cancer-

associated mutations have any impacts on dimerization or other regulation part of 

KLHL6 remain to be elucidated. 

KLHL6 has been shown to be a novel component of BCR signalosomes (Satpathy 

et al., 2015). Our study demonstrates that KLHL6 transcription is up-regulated upon BCR 

stimulation leading to corresponding degradation of Roquin2 protein. Furthermore, the 

protein levels of non-degradable Roquin2 mutant are insensitive to BCR stimulation. 

Although we have not investigated whether this regulation exists similarly in primary B-

cells, we have, for the first time, identified the physiological condition where Roquin2 

protein abundance is controlled by proteasomal degradation in B-cell cancers. The 
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mechanism of how KLHL6 expression is up-regulated by BCR signaling will be explored 

further in chapter 4.  

Taken together, our findings indicate that KLHL6 is an E3 ligase for Roquin2. 

Cancer-associated mutations of KLHL6 inhibit its ubiquitin ligase activity, leading to 

CULLIN3 dissociation. The integrity of the tyrosine 691 in Roquin2 is critical for the 

KLHL6-Roquin2 interaction, and B-cell receptor activation induces degradation of 

Roquin2. How the KLHL6-Roquin2 axis functions in DLBCL biology and how alteration 

of this pathway affects cancel cell proliferation and survival will be discussed in chapter 

4. 
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Figure 3.1 Analyses of KLHL6 cancer mutations in B-cell malignancies 

(A) KLHL6 mutations occur most frequently in DLBCL. The graph shows the percentage 

of KLHL6 mutations found in different B-cell cancer patients. Diffuse Large B-cell 

Lymphoma DLBCL [University of Nebraska Medical Center (UNMC), n=140, The 

Cancer Genome Atlas (TCGA), n=48, Canada’s Michael Smith Genome Sciences Centre 
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(CMSGSC), n=96, and Broad Institute (Broad), n=58], Chronic Lymphocytic Leukemia 

(CLL) [Departamento de Bioquímica y Biología Molecular, Instituto Universitario de 

Oncología (IUOPA), n=586] and Multiple Myeloma (MM) [Broad Institute (Broad), 

n=205]. In blue, missense mutations; in red, nonsense mutations; in green, frameshift 

mutations. (B) KLHL6 mutations occur in a similar rate among different DLBCL sub-

types. UNMC and CMSGSC cohorts were pooled and sub-classified as Activated B-cell-

like (ABC), Germinal Center B-cell-like (GC) and Unclassified DLBCL. (C) Schematic 

representation of KLHL6 protein (BTB, Broad-Complex, Tramtrack and Bric-a-brac; 

BACK, BTB and C-terminal Kelch plant homeodomain; Kelch domain, Kelch motif).  In 

blue, missense mutations; in red, nonsense mutations; in green, frameshift mutations. (D) 

DNA copy number (chromosome 3) data were used from previously published high-

resolution single nucleotide polymorphism (SNP) microarray analysis of 609 primary 

DLBCL tumors (Green et al., 2014). The position of KLHL6 is annotated for 21 DLBCL 

tumors with copy number <1.8. About 3.4% of patients show KLHL6 loss. (E) A row-

normalized heat map is shown for probe sets of KLHL6. 249 tumors with matched DNA 

copy number data from a previously published study (Green et al., 2014) were analyzed 

for gene expression microarray and annotated for the cell of origin subtype and DNA 

copy loss of KLHL6 as shown in (D). 6% of DLBCL patient cases have a lower 

expression of KLHL6 transcripts defined as expression ≤1 standard deviation below the 

mean. 
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Figure 3.2 KLHL6 assembles a CULLIN3-based E3 ligase 

(A) CULLIN3 interacts with KLHL6 (WT) and not with KLHL6 BTB-mutant (L65P). 

The graphs show results from mass spectrometry analysis of KLHL6 

immunoprecipitations in two different cell lines (HEK293T and ARP-1). Unique spectral 
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counts numbers for CULLIN3 protein are shown. EV, empty vector control. (B) KLHL6 

is a CULLIN3-Ring-Ligase (CRL3). HEK293T cells were transfected with FLAG-tagged 

E3 ligases.  Proteins were immunoprecipitated (IP) from cell extracts with an anti-FLAG 

resin, and immunocomplexes were probed with antibodies to the indicated proteins. 

Bottom panels show whole cell lysates (WCL). EV, empty vector control. (C) KLHL6 

promotes self-ubiquitylation. FLAG-KLHL6 (WT) or FLAG-KLHL6 (ΔKelch) was 

immunopurified (IP) from transfected HEK293T cells. The IP was incubated with E1, 

Ubch5c (E2), Ubiquitin and ATP as indicated. After 30 minutes, reactions were 

denatured with SDS-lysis buffer and further immunopurified using an anti-FLAG resin 

and stopped by addition of Laemmli buffer. IPs were subjected to immunoblotting for the 

indicated proteins. 
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Figure 3.3 BTB-domain mutations of KLHL6 abolishes its ligase activity 

(A) Cancer-associated mutations in the BTB-domain inhibit interaction with CULLIN3.  

HEK293T cells were transfected with FLAG-tagged KLHL6 wild-type (WT), BTB-

mutants (L65P, S94I and F97L), or empty vector control (EV). Proteins were 

immunoprecipitated (IP) from cell extracts with an anti-FLAG resin, and 

immunocomplexes were probed with antibodies to the indicated proteins. Bottom panels 

show whole cell lysates (WCL). (B) Mutations in the BTB-domain impair KLHL6 self-

ubiquitylation. FLAG-KLHL6 (WT and BTB-mutants) was immunopurified (IP) from 

transfected HEK293T. The IP was incubated with E1, Ubch5c (E2), Ubiquitin and ATP 

as indicated. After 30 minutes, reactions were denatured with SDS-lysis buffer and 

further immunopurified using an anti-FLAG resin and stopped by addition of Laemmli 

buffer. IPs were subjected to immunoblotting for the indicated proteins. (C) Mutations in 

the BTB-domain extend KLHL6 half-life. A DLBCL cell line, OCI-LY10, was 

engineered by CRISPR to generate a OCI-LY10 KLHL6-/- cell line. Cells were 

retrovirally transduced with cDNAs encoding an empty vector (EV), KLHL6 (WT) or 

BTB-mutants (L65P, S94I and F97L). Cells were treated with cycloheximide (CHX) for 

the indicated times, and whole cell lysates were analyzed by immunoblotting for the 

indicated proteins. Bottom panel shows quantification of KLHL6 protein levels using 

ImageJ and their relative intensities were plotted over time. (D) Schematic model of 

CULLIN3-Ring-Ligase (CRL3)-KLHL6. KLHL6 assembles a functional CRL via 

interaction with CULLIN3 and promotes ubiquitylation of itself and a substrate. Cancer-

associated mutations in the BTB-domain displace CULLIN3 interaction.   
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Figure 3.4 KLHL6 specifically interacts with Roquin2.   

(A) Roquin2, but not Roquin1, is highly enriched in catalytic inactive KLHL6 (L65P) 

mutant complex. The graphs show mass spectrometry analysis of KLHL6 

immunoprecipitations in two different cell lines (HEK293T and ARP-1). Unique spectral 

counts for Roquin2 proteins are shown. EV, empty vector control. (B) Roquin2 interacts 

with KLHL6 specifically. HEK293T cells were transfected with cDNAs encoding the 

indicated FLAG-tagged F-box proteins (FBPs) or BTB proteins (BTBPs). Exogenous 

proteins were immunoprecipitated (IP) from cell extracts with an anti-FLAG resin, and 

immunocomplexes were probed with antibodies to the indicated endogenous proteins.  

Lane 1 shows a whole cell lysates (WCL) from cells transfected with an empty vector 

(EV). (C) Roquin2, but not Roquin1, interacts with KLHL6. HEK293T cells stably 
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expressing KLHL6 were transfected with cDNAs encoding the FLAG-Roquin1 or 

FLAG-Roquin2. Exogenous proteins were immunoprecipitated (IP) from cell extracts 

with an anti-FLAG resin, and immunocomplexes were probed with antibodies to the 

indicated proteins. Bottom panels show whole cell lysates (WCL). (D) Endogenous 

Roquin2 and KLHL6 complex is detectable in DLBCL cells. Endogenous KLHL6 was 

immunoprecipitated from U2932 cells and immunocomplexes were probed with 

antibodies to the indicated proteins. IgG antibody immunoprecipitates=negative control. 

A representative blot from two independent experiments is shown. * indicates non-

specific band. (E) KLHL6 binds Roquin2 through the Kelch domain. HEK293T cells 

were transfected with constructs encoding FLAG-tagged KLHL6 (WT) or mutants as 

indicated and empty vector (EV). KLHL6 was immunoprecipitated (IP) from cell extracts 

with an anti-FLAG resin, and immunocomplexes were probed with antibodies to the 

indicated proteins.    
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Figure 3.5 KLHL6 promotes ubiquitylation and degradation of Roquin2.   

(A) Protein levels of Roquin2 and KLHL6 are inversely correlated in human DLBCL 

cells. Indicated human DLBCL cell lysates were analyzed by immunoblotting for the 

indicated proteins. (B) Quantification of Roquin2 (x-axis) and KLHL6 (y-axis) protein 

levels in each DLBCL cell line. n=11 DLBCL cell lines. r, Pearson correlation coefficient 

(95% confidence interval). (C) Knockdown of KLHL6 extends Roquin2 half-life in OCI-

LY10 cells. OCI-LY10 cells were electroporated with siRNA scramble (siCTRL) or 

targeting KLHL6 (siKLHL6). Cells were treated with cycloheximide (CHX) for the 

indicated times. Whole cell lysates were analyzed by immunoblotting for the indicated 

proteins (top panel). Bottom panel shows quantification of Roquin1 and Roquin2 protein 

levels using ImageJ and their relative intensities were plotted over time. (D) Loss of 

KLHL6 extends Roquin2 half-life in U2932 cells. U2932 KLHL6+/+ and KLHL6-/- cells 

were treated with cycloheximide (CHX) for the indicated times. Whole cell lysates were 

analyzed by immunoblotting for the indicated proteins (top panel). Bottom panel shows 

quantification of Roquin1 and Roquin2 protein levels using ImageJ and their relative 

intensities were plotted over time. (E) Roquin2 protein levels were negatively regulated 

by expression of KLHL6. HEK293T (TET)-OFF cells were transduced with retroviruses 

encoding a doxycycline (DOX) inducible expression of FLAG-tagged KLHL6 carrying a 

hygromycin cassette (left panel). DOX was added and/or washed at the indicated times. 

Whole cell lysates were analyzed by immunoblotting for the indicated proteins (left 

panel). HBL1 cells were transduced with lentiviruses encoding a doxycycline (DOX) 

inducible expression of KLHL6 wild-type (WT) carrying a puromycin cassette. The cells 
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were treated with DOX for 12 hours. Whole cell lysates were analyzed by 

immunoblotting for the indicated proteins (right panel). (F) Cancer-associated mutations 

of KLHL6 are incapable of promoting Roquin2 degradation. OCI-LY8 cells were 

transduced with retroviruses encoding empty vector (EV), KLHL6 wild type (WT) or 

BTB-mutants (L65P, S94I and F97L). Whole cell extracts were subjected to 

immunoblotting for the indicated proteins. (G) Roquin2 is ubiquitylated in vitro in a 

KLHL6 and CULLIN3-dependent manner. FLAG-KLHL6 and Roquin2 were 

immunopurified from HEK293T cells and incubated at 30°C with a ubiquitylation mix 

containing E1, UbcH5c, ubiquitin, and ATP. Reactions were stopped by addition of 

Laemmli buffer at the indicated times, and analyzed by immunoblotting for the indicated 

proteins. (H) Roquin2 ubiquitylation is regulated by KLHL6 in vivo. Endogenous 

Roquin2 was immunoprecipitated from U2932 KLHL6+/+ or KLHL6-/- (clone-derived) cell 

extracts pre-treated with or without MG132 for 6 hours, and immunocomplexes were 

probed with antibodies to the indicated proteins. A representative blot from two 

independent experiments is shown. 
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Figure 3.6 BTB-mutations of KLHL6 are not dominant-negative 
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(A) Expression KLHL6 (WT) promotes Roquin2 degradation even in the presence of 

BTB-mutations of KLHL6. HEK293T cells were transduced with lentiviruses encoding a 

doxycline (DOX) inducible expression of KLHL6 carrying a puromycin cassette and then 

infected with lentiviruses encoding empty vector (EV) or KLHL6 BTB-mutants (L65P 

and S94I) carrying a GFP marker. The cells were treated with DOX for 12 hours, and 

whole cell extracts were subjected to immunoblotting for the indicated proteins. (B) 

BTB-mutations of KLHL6 are not dominant-negative. Top panel shows the schematic 

representation of KLHL6 protein displaying endogenous mutations in two different cell 

lines (VAL and SUDHL10). HEK293T cells were transfected with constructs encoding 

FLAG-tagged KLHL6 wild-type (WT), KLHL6 mutants (L24R, A25E, N60T, and 

T72R), or empty vector (EV). Exogenous proteins were immunoprecipitated (IP) from 

cell extracts with an anti-FLAG resin, and immunocomplexes were probed with 

antibodies to the indicated proteins. (C) KLHL6 is not functional in VAL cells. VAL and 

SUDHL10 cells were electroporated with siRNA scramble (siCTRL) or targeting KLHL6 

(siKLHL6) and whole cell extracts were subjected to immunoblotting for the indicated 

proteins. (D) KLHL6 is not functional in VAL cells. VAL and SUDHL10 cells stably 

expressing KLHL6 under a doxycycline (DOX) inducible promoter with a puryomycin 

cassette were treated with DOX for 12hrs and whole cell extracts were subjected to 

immunoblotting for the indicated proteins. (E) KLHL6 mRNA levels were comparably 

low in VAL cells. Analysis of KLHL6 expression by quantitative PCR (qPCR) in 

different cell lines is shown, and the value for the PCR product from U2932 cells was set 

as 1. A representative graph from two independent experiments is shown. 
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Figure 3.7 Interaction between KLHL6 and Roquin2 requires a functional tyrosine 

residue Y691 in Roquin2 
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(A) Mapping strategy for KLHL6 binding motif in Roquin2. HEK293T cells stably 

expressing KLHL6 were transfected with constructs encoding an empty vector (EV), 

FLAG-tagged Roquin2 wild type (WT) or mutants as indicated. Left panel shows a 

schematic representation of Roquin2 mutants. Roquin2 mutants that interact (+) or do not 

interact (-) with KLHL6 are shown. Right panel shows immunoblot analysis of FLAG-

Roquin2 immunoprecipitation (IP). Immunocomplexes were probed with antibodies to 

the indicated proteins. Asterisk indicates non-specific bands. (B) Same as in (A). (C) 

Same as in (A). (D) Roquin2 binds KLHL6 through tyrosine 691. Left panel shows 

conservation of tyrosine 691 in lower species. HEK293T cells stably expressing KLHL6 

were transfected with constructs encoding an empty vector (EV), FLAG-tagged Roquin2 

wild type (WT) and mutants as indicated. Roquin2 was immunoprecipitated (IP) from 

cell extracts with an anti-FLAG resin, and immunocomplexes were probed with 

antibodies to the indicated proteins (right panel). (E) Schematic representation of the 

biotinylated Roquin2 peptide sequences. (F) KLHL6 directly interacts with Roquin2 in in 

vitro pull-down assay. The indicated amount of biotinylated Roquin2 peptides were 

incubated with whole cell extracts from HEK293T cells stably expressing KLHL6. 

Affinity Purification, AP. (G) and (H) KLHL6 directly interacts with Roquin2 in in vitro 

pull-down assay. Same as in (F) except that FLAG-tagged in-vitro translated proteins 

were utilized instead of whole cell extracts as indicated. Immunocomplexes were probed 

with anti-FLAG antibody to the indicated proteins as all in-vitro translated proteins were 

FLAG-tagged. (I) Mutation of tyrosine 691 into alanine or phenylalanine inhibits 

interaction with KLHL6. HEK293T cells stably expressing KLHL6 were transfected with 
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constructs encoding an empty vector (EV), FLAG-tagged Roquin2 wild type (WT) or 

mutants as indicated. Roquin2 was immunoprecipitated (IP) from cell extracts with an 

anti-FLAG resin, and immunocomplexes were probed with antibodies to the indicated 

proteins. (J) A mutant of Roquin2 incapable of interacting with KLHL6 displays a 

prolonged half-life in DLBCL cells. A DLBCL cell line, BJAB, was retrovirally 

transduced with cDNAs encoding Roquin2 (WT) or Roquin2 (Y691F). Cells were treated 

with cycloheximide (CHX) for the indicated times, and whole cell lysates were analyzed 

by immunoblotting for the indicated proteins (top panel). Roquin2 protein levels were 

quantified using Image J and their relative intensities were plotted over time (bottom 

panel). (K) KLHL6 (WT) induces degradation of Roquin2 (WT), but not Roquin2 

(Y691F), while KLHL6 (L65P) has no effect. HEK2932T cells stably expressing KLHL6 

(WT) or KLHL6 (L65P) were further infected with retroviruses encoding an empty 

vector (EV), Roquin2 (WT) or Roquin2 (Y691F). Whole cell lysates were analyzed by 

immunoblotting for the indicated proteins. A low exposure (l.e) and high exposure (h.e) 

are shown for HA-tagged Roquin2. 
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Figure 3.8 KLHL6 promotes Roquin2 degradation upon BCR stimulation  

(A) ABC-DLBCLs and GCB-DLBCLs express IgM and IgG on their cell surfaces, 

respectively. A panel of human DLBCLs were stained either with anti-IgM or anti-IgG 

antibody to detect surface expression. A darker curve indicates a positive signal. A 

representative image from two independent experiments is shown. (B) B-cell receptor 
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activation induces Roquin2 down-regulation in DLBCL cells. KLHL6-expressing ABC-

DLBCL cell lines, OCI-LY10 and U2932, and a non-expressing cell line, HBL1, were 

stimulated with 10 µg/ml of F(ab’)2-IgM for 3 and 6 hours. Whole cell lysates were 

analyzed by immunoblotting for the indicated proteins. A low exposure (l.e.) and high 

exposure (h.e.) are shown for Roquin2 (Left Panel). Right panel shows levels of KLHL6 

mRNA analyzed by qPCR. The value for the PCR product from U2932 was set as 1. A 

representative graph from two independent experiments is shown. (C) Degradation of 

Roquin2 is blocked upon chemical inhibition of CULLIN neddylation. U2932 cells were 

treated with 10 µg/ml of F(ab’)2-IgM for the indicated times. Where indicated, cells were 

pre-treated with 5µM MLN4932 for 1 hour. Whole cell lysates were analyzed by 

immunoblotting for the indicated proteins. (D) BCR stimulation up-regulates KLHL6 

transcriptionally. U2932 cells were treated with 10 µg/ml of F(ab’)2-IgM for the 

indicated times. Levels of KLHL6 mRNA were analyzed by real time PCR. The value for 

PCR product present without treatment was set as 1. A representative graph from two 

independent experiments is shown. (E) Roquin2 is degraded in a dose-dependent BCR 

signaling- and KLHL6-dependent manner. U2932 cells were electroporated with a 

siRNA scramble (siCTRL) or targeting KLHL6 (siKLHL6) and treated with increasing 

concentrations of F(ab’)2-IgM for 6 hours. Whole cell lysates were analyzed by 

immunoblotting for the indicated proteins. (F) Degradation kinetics of Roquin2 are 

dependent on BCR signaling and KLHL6 expression. OCI-LY10 cells were treated with 

10µg/ml F(ab’)2-IgM for the indicated times. Where indicated, cells were electroporated 

with a siRNA scramble (siCTRL) or targeting KLHL6 (siKLHL6). Whole cell lysates 
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were analyzed by immunoblotting for the indicated proteins. (G) Roquin2 is degraded in 

a KLHL6-depenent manner. U2932 KLHL6+/+ and KLHL6-/- (clone-derived) cells were 

treated with increasing concentrations of F(ab’)2-IgM for 6 hours. Whole cell lysates 

were analyzed by immunoblotting for the indicated proteins. (H) Roquin2 (Y691F) 

mutant is insensitive to BCR-induced degradation. U2932 cells were stably transduced 

with retroviruses encoding HA-Roquin2 (WT) or HA-Roquin2 (Y691F). Cells were 

treated with increasing concentrations of F(ab’)2-IgM for 6 hours, and whole cell lysates 

were analyzed by immunoblotting for the indicated proteins.   
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University of Nebraska Medical Center(UNMC)
Type Chromosome Sample ID Variant Classification Amino Acid Change
DLBCL 3 DLBCL-36539 missense C85W
DLBCL 3 DLBCL-43092 missense M67I
DLBCL 3 S02-2857 missense A135V
DLBCL 3 S02-312 missense V78E
DLBCL 3 S08-4728 missense N69D
DLBCL 3 S08-4728 missense D73H
DLBCL 3 S08-4728 missense I80M
DLBCL 3 SC06-1631 missense M3R
DLBCL 3 SC06-1631 missense E17A
DLBCL 3 SC06-1631 stop-gained L42*
DLBCL 3 SC06-3802 missense D29N
DLBCL 3 SC07-2866 missense G475E
DLBCL 3 SC08-2147 missense L90F
DLBCL 3 SP01-10756 missense E568K

Canada's Michael Smith Genome Sciences Centre(CMSGSC)
Type Chromosome Sample ID Variant Classification Amino Acid Change
DLBCL(GCB) 3 98-22532/DLBCL- missense S83T, S94T
DLBCL(GCB) 3 95-32814 not-classified 2
DLBCL(GCB) 3 05-24561 not-classified 1
DLBCL(GCB) 3 96-20883 missense L54V, L65V
DLBCL(ABC) 3 02-22991 missense, stop L45*, L56*, T53I, T64I
DLBCL(ABC) 3 07-37968 not-classified 1
DLBCL(GCB_Line) 3 OCI-Ly1 not-classified 1
DLBCL(GCB) 3 05-24904 not-classified 1
DLBCL(ABC) 3 06-16716 missense T53S, T64S
DLBCL(U) 3 82-57570 not-classified 1
DLBCL(U) 3 04-20644 not-classified 1
For CMSGSC data, the total numbers of cSNV detected are reported (the exact change of cSNV is not reported)

Broad Institute(Broad)
Type Chromosome Sample ID Variant Classification Amino Acid Change
DLBCL 3 4 missense R566W
DLBCL 3 5 missense C578S
DLBCL 3 47 missense C508R
DLBCL 3 49 missense F83L
DLBCL 3 49 missense D14N

The Cancer Genome Atlas(TCGA)
Type Chromosome Sample ID Variant Classification Amino Acid Change
DLBCL 3 TCGA-GR-A4D6-01 missense T387A
DLBCL 3 TCGA-FM-8000-01 missense L90P
DLBCL 3 TCGA-FF-8047-01 missense A91V
DLBCL 3 TCGA-G8-6914-01 missense L65P
DLBCL 3 TCGA-GR-A4D9-01 missense E547K
DLBCL 3 TCGA-FF-A7CW-01 missense L90F
DLBCL 3 TCGA-FF-8062-01 missense E547Q
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Duke Cancer Institute
Type Chromosome Sample ID Variant Classification Amino Acid Change
DLBCL 3 3620* frameshift substitution exon1:c.268_280CA
DLBCL 3 3582* nonframeshift substitution exon1:c.60_75A
DLBCL 3 2613 nonsynonymous SNV exon1:c.A126C:p.L42F
DLBCL 3 3593 nonsynonymous SNV exon1:c.A152G:p.D51G
DLBCL 3 3593* nonsynonymous SNV exon1:c.A168C:p.L56F
DLBCL 3 3401 nonsynonymous SNV exon1:c.A179T:p.N60I
DLBCL 3 2217, 3439 nonsynonymous SNV exon1:c.A236T:p.D79V
DLBCL 3 2290, 3703 nonsynonymous SNV exon1:c.A246T:p.E82D
DLBCL 3 705* nonsynonymous SNV exon1:c.A287C:p.Y96S
DLBCL 3 3506* stopgain exon1:c.C175T:p.Q59X
DLBCL 3 3625 nonsynonymous SNV exon1:c.C209G:p.A70G
DLBCL 3 2158, 2213 nonsynonymous SNV exon1:c.C211G:p.L71V
DLBCL 3 2809* stopgain exon1:c.C241T:p.Q81X

DLBCL 3
2243, 2559, 2901,
2945, 3634* nonsynonymous SNV exon1:c.C268T:p.L90F

DLBCL 3 2649* nonsynonymous SNV exon1:c.G217A:p.D73N
DLBCL 3 2901 nonsynonymous SNV exon1:c.G232C:p.V78L
DLBCL 3 3681* nonsynonymous SNV exon1:c.G254A:p.C85Y
DLBCL 3 2827, 3627* nonsynonymous SNV exon1:c.G281A:p.S94N
DLBCL 3 2073* nonsynonymous SNV exon1:c.T161C:p.L54P

DLBCL 3

705, 2158, 2302, 
2522, 2544, 2613, 
3548, 3601, 3614, 3819* nonsynonymous SNV exon1:c.T194C:p.L65P

DLBCL 3 2048* nonsynonymous SNV exon1:c.T200A:p.M67K
DLBCL 3 3739* nonsynonymous SNV exon1:c.T247A:p.F83I
DLBCL 3 2556, 3739* nonsynonymous SNV exon1:c.T286G:p.Y96D
DLBCL 3 2613* stopgain exon1:c.T288A:p.Y96X
DLBCL 3 2654* nonsynonymous SNV exon2:c.A320G:p.E107G
DLBCL 3 2286 nonsynonymous SNV exon3:c.C743T:p.S248L
DLBCL 3 2952, 3542 nonsynonymous SNV exon4:c.G1040A:p.R347H
DLBCL 3 3609 nonsynonymous SNV exon4:c.G1105A:p.E369K
DLBCL 3 3741 nonsynonymous SNV exon5:c.A1184G:p.N395S
DLBCL 3 2826, 2840 nonsynonymous SNV exon5:c.C1231T:p.R411C
DLBCL 3 2676, 3468, 3495 nonsynonymous SNV exon5:c.G1324A:p.D442N
DLBCL 3 2543 nonsynonymous SNV exon5:c.T1313A:p.V438E
DLBCL 3 3903 nonsynonymous SNV exon6:c.G1427A:p.G476E
DLBCL 3 3718, 3832 nonsynonymous SNV exon7:c.A1640G:p.E547G
DLBCL 3 3944 nonsynonymous SNV exon7:c.C1675T:p.R559W
DLBCL 3 2455 nonsynonymous SNV exon7:c.C1724T:p.T575M
DLBCL 3 3883 nonsynonymous SNV exon7:c.G1639A:p.E547K

DLBCL 3

705, 2083, 2120, 
2153, 2269, 2709, 
2785, 2912, 2944, 
3401, 3484 nonsynonymous SNV exon7:c.G1702A:p.E568K

DLBCL 3 2867, 3595 nonsynonymous SNV exon7:c.G1781A:p.R594Q
DLBCL 3 3542, 3585, 3627 nonsynonymous SNV exon7:c.G1804A:p.V602I
DLBCL 3 2654 nonsynonymous SNV exon7:c.T1685C:p.I562T
DLBCL 3 2827 nonsynonymous SNV exon7:c.T1735G:p.W579G
DLBCL 3 2816 nonsynonymous SNV :exon7:c.T1819G:p.S607A
*  BTB mutations experimentally verified to abolish CULLIN3 interaction. 
These mutations where utilized to calculate statistical association with TNFAIP3 mutations
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Table 3.1 KLHL6 mutations in DLBCLs 

List of KLHL6 mutations in B-cell cancer patients [University of Nebraska Medical 

Center (UNMC), The Cancer Genome Atlas (TCGA), Canada’s Michael Smith Genome 

Sciences Centre (CMSGSC), Broad Institute (Broad), Duke Cancer Institute (DCI) and 

Instituto Universitario de Oncología (IUOPA)].  

Instituto Universitario de Oncologia(IUOPA)
Type Chromosome Sample ID Variant Classification Amino Acid Change
CLL 3 3 missense L65P
CLL 3 3 missense F49L
CLL 3 287 missense V47G
CLL 3 287 missense(synonymous) D14D
CLL 3 338 missense T6S4
CLL 3 338 missense F49I
CLL 3 338 missense L38S
CLL 3 381 missense L65P
CLL 3 535 missense I75F
CLL 3 535 missense M67V
CLL 3 594 missense L90F
CLL 3 669 missense L6P5
CLL 3 770 missense S94I
CLL 3 884 missense L65P
CLL 3 1237 missense L90R
CLL 3 1353 missense L90V
CLL 3 1462 stop Q81*
CLL 3 1465 missense Y96F
CLL 3 1465 missense Q81K
CLL 3 1471 missense A93G

Broad Institute(Broad)
Type Chromosome Sample ID Variant Classification Amino Acid Change
MM 3 MM-0308-Tumor missense F97L
MM 3 MM-0335-Tumor Intron n/a
MM 3 MM-0338-Tumor Intron n/a
MM 3 MM-0389-Tumor Intron n/a
MM 3 MM-0389-Tumor Intron n/a
MM 3 MM-0408-Tumor Intron n/a
MM 3 MM-0447-Tumor Intron n/a
MM 3 MM-0456-Tumor Intron n/a
MM 3 MM-0456-Tumor Intron n/a
MM 3 MM-0633-Tumor 3'UTR n/a
MM 3 MM-0510-Tumor In frame deletion V89
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Data set Cell Type Condition # Replicates Accession 
Code 

Mass 
Spectrometry  

HEK293T cells Empty Vector, 
KLHL6 (WT), 
KLHL6 (L65P)  

1 PXD008963 

Mass 
Spectrometry 

ARP-1 cells Empty Vector, 
KLHL6 (WT), 
KLHL6 (L65P) 

1 PXD008963 

 

Table 3.2 Proteomic analyses of KLHL6 complexes generated in this dissertation 

List of KLHL6 interacting proteins identified by proteomic analyses of KLHL6 

complexes purified from ARP-1 and HEK293T cells.  



www.manaraa.com

 
 

90 

CHAPTER 4 : THE BIOLOGICAL FUNCTION OF KLHL6-ROQUIN2 AXIS IN 

ABC-DLBCLS 

 

Chapter summary 

 Research described in this chapter was performed in collaboration with the 

laboratories of Dr. Roberto Bonasio and Dr. Michael Green. RNA-seq sample 

preparations and analyses were carried out in collaboration with Kristin Ingvarsdottir, a 

postdoctoral fellow in Dr. Roberto Bonasio’s laboratory (Upenn). The mutual exclusivity 

analysis for DLBCL patients was carried out in collaboration with Dr. Roberto Bonasio 

laboratory (Upenn) and Dr. Michael Green laboratory (MD Anderson Cancer Center) 

 Some of works presented here forms the body of a manuscript that is currently 

accepted at Nature Cell Biology. Experiments on GCB-DLBCL cell growth and survival 

are unpulished and establish the basis for the ongoing projects in our laboratory to 

investigate whether KLHL6 has a function beyond cell autonomous regulation. This 

chapter is focused on elucidating the role of the KLHL6-Roquin2 axis on ABC-DLBCL 

biology and is written and arranged differently from the original manuscript.  

 

Jaewoo Choi, Kyutae Lee, Kristin Ingvarsdottir, Roberto Bonasio, Anita Saraf, Laurence 

Florens, Michael P. Washburn, Saber Tadros, Michael R. Green, and Luca Busino. Loss 

of KLHL6 promotes diffuse large B-cell lymphoma growth and survival by stabilizing 

the mRNA decay factor Roquin2 
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Introduction  

DLBCL is the most common lymphoid malignancy accounting for ~30% of 

lymphoma cases and can be sub-divided into three distinct molecular subtypes: activated 

B cell-like (ABC) DLBCL, germinal center B cell-like (GCB) DLBCL, and primary 

mediastinal B cell lymphoma (PMBL) (Alizadeh et al., 2000; Rosenwald et al., 2003). 

These subtypes arise from different stages of B-cell differentiation and are characterized 

by reliance on completely distinctive oncogenic signaling pathways. GCB-DLBCLs are 

arising from centroblasts within the germinal center and generally expresses lower NF-

κB target genes than ABC-DLBCL (Staudt, 2010). One of the key features of GCB-

DLBCLs is the amplification of chromosome 2 encoding c-rel with 27% of occurrence 

and translocation involving bcl2 gene (Lenz et al., 2008f). Furthermore, GCB-DLBCLs 

are characterized by deletion of PTEN, a tumor suppressor gene, and amplification of 

mir-17-92, an oncogenic micro-RNAs with deregulated expression of Bcl-6 (Parekh et 

al., 2007; Shaffer et al., 2002). BCL6 gene plays an important role in germinal center 

(GC) formation and suppresses genes involved in cell cycle arrest, apoptosis, and DNA 

checkpoint genes (Cerchietti et al., 2010; Phan and Dalla-Favera, 2004). This suggests 

that Bcl-6 is a potential target gene in GCB-DLBCL. In fact, inhibitors of Bcl-6 BTB 

domain, histone deacetylase, and topoisomerase II have shown some efficacies in down-

regulating Bcl6 expression and improved survival of younger DLBCL patients (Cerchietti 

et al., 2010; Kurosu et al., 2003; Parekh et al., 2007).  

On the other hand, key features of human ABC-DLBCLs are hyper-activation of 

the inhibitor of IkB kinase (IKK) and the NF-κB transcription factor program (Staudt, 
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2010). ABC-DLBCL cell lines depend on chronic active B-cell receptor (BCR) signaling 

that mediates NF-κB activation for their proliferation and survival (Staudt, 2010; Young 

et al., 2015). This is evidenced by frequent mutations occurrence in the BCR pathway, 

including activating mutations of positive (CD79A/B and CARD11 (Davis et al., 2010; 

Lenz et al., 2008a)) and inactivating mutations of negative (TNFAIP3 (Compagno et al., 

2009; Davis et al., 2010; Kato et al., 2009; Lenz et al., 2008a)) NF-κB regulators. This 

suggests that ABC-DLBCLs might have increased BCR antigenic response and targeting 

the components of the BCR pathway such as Bruton’s tyrosine kinase (Btk) would be a 

great therapeutic approach. In fact, ibrutinib, which is a covalent inhibitor of Btk, is 

selectively toxic to ABC-DLBCL cell lines with an anti-proliferative activity (Davis et 

al., 2010). More importantly, in a phase 1/2 clinical trial, ibrutinib has shown to produce 

complete or partial responses with relapsed or refractory ABC-DLBCL patients with 

more frequent response rate for the patients with BCR mutations and concomitant 

myeloid differentiation primary response 88 (MYD88) mutations (Wilson et al., 2015).  

ABC-DLBCLs are also dependent on MYD88, which is an adaptor protein that 

mediates NF-κB pathway after activation of toll-like receptors and IL-1 and IL-8 

receptors (Iwasaki and Medzhitov, 2010). RNA interference screening has shown that 

MYD88 and the IRAK1 and IRAK4 (IL-1 receptor-associated kinases) are critical for 

ABC DLBCL survival (Ngo et al., 2011). About 29% of ABC DLBCL tumors harbors 

L265P mutation in MYD88, which is a gain of function mutation that activates NF-κB 

signaling, JAK-STAT3 and cytokine signaling such as IL-6, IL-10, and interferon-β, 

promoting survival of ABC-DLBCLs. More recently, integrative analysis of whole-
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exome and transcriptome seqeuencing have identified novel genetic drivers and defined 

oncogenes that promote DLBCL growth and survival, including well-known genes 

described above such as MYD88 and CARD11 (Reddy et al., 2017) along with unknown 

gene like KLHL6 with 10-15% of cases in DLBCLs. We have analyzed the biochemical 

aspects of cancer-associated mutations in KLHL6 and found that mutations completely 

disrupt its ligase activity and interaction with CULLIN3 in chapter 3. However, exact 

mechanisms of how KLHL6 contributes to the pathology of human DLBCL and whether 

the stabilization of KLHL6 substrate, Roquin2, influences NF-κB activation or BCR 

signaling pathways is currently unknown.   

One another common target of genetic alteration in ABC-DLBCLs is tumor 

necrosis factor-a-inducible gene 3 (TNFAIP3 or A20), a negative regulator of NF-κB 

signaling pathway. Roughly 30% of ABC-DLBCL patients show nonsense mutations and 

biallelic inactivation of this gene, and re-introduction of wild-type A20 in A20-null ABC-

DBLCL cell lines induces cellular apoptosis and growth arrest. This suggests that A20 is 

a relevant tumor suppressor in ABC-DLBCLs (Compagno et al., 2009). A20 belongs to 

deubiquitinating enzymes with ovarian tumour (OTU) domain and serves as a terminator 

of NF-κB responses by deubiquitinating TRAF2/6, IKKγ subunit, and MALT1 proteins 

(Boone et al., 2004; Lin et al., 2008; Wertz et al., 2004). The fact that A20-deficient mice 

die from spontaneous inflammation suggests that A20 mutations alone might not be 

sufficient to induce constitutive NF-κB signaling pathway (Boone et al., 2004). Instead, 

they might rather cooperate with other genetic alteration events such as CARD11 or 

CD79A/B mutations to enhance NF-κB programs. Although there are many cases 
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reported for genetic mutation and inactivation of A20, whether there are additional 

mechanisms to inhibit its function in B-cell malignancies remain to be determined.  

In chapter 4, we have identified a novel role for KLHL6-Roquin2 axis in ABC-

DLBCLs. We found that KLHL6 is a tumor suppressor gene where loss of KLHL6 favors 

cancer cell growth and survival both in vitro and in xenograft models. Correspondingly, 

ABC-DLBCL cell lines expressing non-degradable Roquin2 (Y691F) mutant exhibit a 

similar growth advantage compared to cells expressing Roquin2 (WT). These 

proliferative and growth effects were dependent on RNA binding ability of Roquin2. 

Mechanistically, stabilization of Roquin2 promotes mRNA decay of the tumor suppressor 

and NF-κB pathway inhibitor, tumor necrosis factor-a-inducible gene 3 (TNFAIP3), 

thereby enhancing NF-κB programs in ABC-DLBCLs. All together, our study shows a 

previously uncharacterized molecular mechanism whereby the KLHL6-Roquin2 axis 

affects B-cell cancer cell proliferation through modulation of the NF-κB activity via 

mRNA decay. 

 

 

Results 

KLHL6 is a tumor suppressor in ABC-DLBCL subtype 

Given that cancer-associated mutations of KLHL6 result in loss of E3 ubiquitin 

ligase activity, we hypothesized that KLHL6 acts as a tumor suppressor by promoting 
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Roquin2 degradation. KLHL6 mutations are equally distributed among the two molecular 

subtypes of DLBCL, even though KLHL6 mutations are predictive of poor patient 

survival mainly in the ABC-DLBCL cohorts (Meriranta et al., 2016). First, we 

investigated the dependency of GCB-DLBCL cells on Roquin2. We utilized shRNA-

mediated knockdown of Roquin2 in SUDHL10, which display a functional KLHL6. Loss 

of Roquin2 had no significant effects on cell proliferation (Fig 4.1A). Similar data were 

obtained in VAL cells (Fig 4.1B), which harbor a KLHL6 loss of function mutation. 

Furthermore, we edited the KLHL6 locus in the GCB-DLBCL cell line BJAB, which 

carries wild-type KLHL6 alleles, and showed that concomitant knockdown of Roquin2 

had no significant effects on cell proliferation in both KLHL6+/+ and KLHL6-/- cells (Fig 

4.1C). To analyze the impact of Roquin2 stabilization in GCB-DLBCL cells, we 

generated BJAB cells stably expressing Roquin2 (WT) or Roquin2 (Y691F) and 

measured differential gene expression in these cells via RNA sequencing. GO enrichment 

analysis revealed minor pathway alteration (Fig 4.1D). Thus, although the mutational 

pattern in GCB-DLBCL patients suggests KLHL6 as a tumor suppressor in this subtype, 

the survival data (Meriranta et al., 2016) together with our functional characterization 

indicate that the KLHL6-Roquin2 axis does not play a role in cellular proliferation and 

survival in the GCB-DLBCL subtype. 

Since somatic mutations of KLHL6 are clinically relevant in the ABC-DLBCL 

subtype (Leo Meriranta, 2016), we assessed the biological effect of KLHL6 loss by 

infecting Cas9-expressing U2932, OCI-LY10 and TMD8 cells with lentiviruses encoding 

three different gRNAs targeting the KLHL6 gene locus. Loss of KLHL6 in all three ABC-
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DLBCL cell lines resulted in an increase in cellular proliferation with a corresponding 

decrease in apoptosis (Fig. 4.1E and 4.1F). This effect was confirmed in 3D cultures as 

measured by a larger number and size of colonies (Fig. 4.1G). To rule out the possible 

off-target effects of gRNAs, we utilized shRNA-mediated knockdown of KLHL6 in 

U2932 and OCI-LY10 and observed similar results (Fig. 4.1H and 4.1I).  

Having established that KLHL6 loss promotes ABC-DLBCL growth and survival, 

we next investigated whether cancer mutations in the BTB-domain of KLHL6 would 

affect cell growth. To this aim, we re-introduced KLHL6 (WT) or KLHL6 BTB-domain 

mutants (L65P, S94I and F97L) along with an empty vector (EV) in U2932 KLHL6-/- 

cells (Fig. 4.1J). Re-expression of KLHL6 (WT) in KLHL6-/- cells decreased the rate of 

cancer cell proliferation, confirming KLHL6 as a tumor suppressor in DLBCLs. 

However, KLHL6 BTB-domain mutants displayed similar proliferative effects compared 

to KLHL6 (EV), phenocopying the loss of KLHL6 (Fig. 4.1J). This confirms the fact that 

mutations in the BTB-domain of KLHL6 are loss of function mutation in ABC-DLBCLs. 

Furthermore, we injected these U2932 KLHL6-/- cells re-expressing either EV, KLHL6 

(WT) or KLHL6 (S94I) subcutaneously into NOD/SCID/IL2Rγ-/- (NSG) mice. In 

agreement with the cell proliferation data, expression of KLHL6 (WT) decreased tumor 

burden, measured by tumor volume and tumor weight (Fig. 4.1K). In contrast, DLBCL 

cells expressing KLHL6 (S94I) displayed a similar tumor burden compared to KLHL6-/- 

cells (EV).  

Lastly, to examine whether KLHL6 expression correlates with better survival of 

ABC-DLBCL patients, we combined gene expression data sets from three different 
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studies (Lenz et al., 2008f; Monti et al., 2012; Visco et al., 2012) and found that low 

KLHL6 expression correlated with significantly poorer survival in ABC-DLBCL patients 

(Fig. 4.1L). This analysis further supports the notion that KLHL6 is a tumor suppressor in 

ABC-DLBCL cells.  

 

Roquin2 stabilization promotes ABC-DLBCL growth and survival 

Since loss of KLHL6 induces stabilization of Roquin2, we investigated the 

significance of the KLHL6-Roquin2 axis by analyzing the effect of Roquin2 stabilization 

on ABC-DLBCL growth. We generated U2932 cells stably expressing Roquin2 (WT) or 

Roquin2 (Y691F) for use in xenograft experiments. Consistent with the hypothesis that 

loss of KLHL6 promotes cell proliferation and survival via stabilization of Roquin2, 

expression of the non-degradable Roquin2 (Y691F) mutant increased tumor burden when 

inoculated sub-cutaneously in NSG mice as monitored by tumor volume and weight at the 

experimental endpoint (Fig. 4.2A). This effect was not due to an overexpression artifact 

because the levels of Roquin2 (Y691F) were similar (actually even lower) to those of 

endogenous Roquin2 in KLHL6-/- cells (Fig. 4.2B).  

Furthermore, we utilized shRNA-mediated knockdown of Roquin2 in KLHL6-/- 

U2932 and OCI-LY10 cells and found that ablation of Roquin2 impaired the cell growth 

advantage of both KLHL6-/- cells (Fig. 4.2C, and 4.2D). Importantly, loss of Roquin2 

increased cell toxicity preferentially in KLHL6-/- cells (Fig. 4.2E), supporting the notion 

that loss of KLHL6 promotes cell proliferation in a Roquin2-dependent manner.  
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Stabilization of Roquin2 down-regulate BCR responsive genes 

Roquin proteins act broadly as regulators of mRNA deadenylation and 

degradation by recognizing stem-loop RNA degradation motifs through a ROQ domain 

(Leppek et al., 2013). We generated a double mutant Roquin2 (Y691FΔROQ) lacking the 

ROQ domain (Fig. 4.3A) to examine whether the pro-proliferative effect of Roquin2 

(Y691F) mutant depends on its RNA binding ability. Remarkably, concomitant deletion 

of the ROQ domain in non-degradable Roquin2 mutant (Y691F) completely abolished 

the growth advantage induced by this mutant, implying that the effect of Roquin2 

stabilization on cell growth requires an intact RNA binding domain.  

BCR signaling is a major pathway driving ABC-DLBCL survival (Staudt, 2010).  

Since stabilization of Roquin2 promotes DLBCL proliferation in a manner dependent on 

the mRNA binding ability of Roquin2, we hypothesized that deregulation of Roquin2 

proteolysis would result in aberrant BCR-dependent transcriptional program. Since 

Roquin2 is targeted for protein degradation in a KLHL6-dependent manner upon 

activation of BCR signaling, we reasoned that expression of the non-degradable Roquin2 

(Y691F) mutant would result in constitutive mRNA decay of Roquin2 targets upon BCR 

activation. We treated U2932 cells expressing Roquin2 (WT) or Roquin2 (Y691F) with 

F(ab’)2-IgM and measured differential gene expression via RNA sequencing analysis 

(Fig. 4.3B and Table 4.1). We performed a pairwise comparison of RNA reads and found 

that 133 mRNAs were significantly down-regulated in Roquin2 (Y691F) expressing cells 



www.manaraa.com

 
 

99 

as compared to Roquin2 (WT). Since Roquin2 is degraded upon BCR stimulation, we 

specifically searched for the BCR dependent transcripts whose expression was up-

regulated by at least two-fold upon BCR activation (Fig. 4.3C). Among 133 genes, we 

identified 64 genes whose expression was BCR-responsive and down-regulated when 

Roquin2 is not properly degraded in DLBCL cells.   

Additionally, we performed gene ontology (GO) enrichment analysis (Fig. 4.3D 

and Table 4.2) and found that Roquin2 putative mRNA targets are involved in immune 

and inflammatory responses, including genes implicated in the NF-κB pathway and as 

lymphoid tumor suppressors (e.g..TNF, NFKBIE, TNFAIP3, LTA, TNFRSF14) (Boice et 

al., 2016; Compagno et al., 2009; Mansouri et al., 2016; Tian et al., 2005; Zhou et al., 

2003). Further, we ranked the final 64 genes by the genetic alteration frequencies in 

human DLBCLs (TCGA, http://cancergenome.nih.gov/) and base mean expression in our 

RNA-Seq analysis to identify relevant targets in DLBCL biology (Fig. 4.3E and Table 

4.1). We identified 11 potential candidates that were additionally validated in a secondary 

screen to evaluate dependency on a functional ROQ domain. We confirmed that all 11 

transcripts were down-regulated by expression of non-degradable Roquin2 (Y691F), with 

7 transcripts rescued upon expression of the double mutant Roquin2 (Y691FΔROQ) (Fig. 

4.3F), suggesting their dependency on Roquin2 mRNA binding/decay activity. We 

concluded that these 7 transcripts were likely direct mRNA targets of Roquin2. 

Amongst the putative mRNA targets we identified, we decided to focus on tumor 

necrosis factor-a-inducible gene 3 (TNFAIP3) with the consideration that human ABC-

DLBCLs frequently harbor inactivating mutations or deletions in the TNFAIP3 gene 
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(Compagno et al., 2009; Davis et al., 2010; Kato et al., 2009; Lenz et al., 2008a). Kinetic 

analysis of mRNA expression in response to BCR stimulation revealed a time-dependent 

up-regulation of TNFAIP3 (Fig. 4.3G), consistent with its function as a negative feedback 

regulator of the NF-κB program (Chu et al., 2011). This response was mitigated in cells 

expressing the non-degradable Roquin2 (Y691F) mutant, suggesting that degradation of 

Roquin2 contributes to a build up TNFAIP3 mRNA levels upon BCR signaling. Notably, 

TNFAIP3 mRNA levels were partially rescued in cells expressing Roquin2 double 

mutant (Y691FΔROQ), indicating that down-regulation of Roquin2 specific targets are 

dependent on the ability of Roquin2 to bind RNA. These data are consistent with 

previous findings that TNFAIP3 mRNA directly interacts with Roquin proteins 

(Murakawa et al., 2015). Moreover, similar results were obtained with the NF-κB target 

genes (NFKBIE and LTA) and the tumor suppressor gene TNFRSF14 (Fig. 4.3G). 

Lastly, we investigated whether the KLHL6-Roquin2 axis can directly control 

TNFAIP3 mRNA levels and its stability. The mRNA half-life of TNFAIP3 was shortened 

upon knockdown of KLHL6 and was partially rescued by concomitant knockdown of 

Roquin2 (Fig. 4.3H). When we re-expressed of KLHL6 (WT) in VAL cells carrying, 

endogenous BTB-domain mutations of KLHL6, the mRNA half-life of TNFAIP3 (Fig. 

4.3I) was greatly extended. Our findings suggest that TNFAIP3 is a target of Roquin2 and 

reveal that loss of KLHL6 promotes down-regulation of TNFAIP3 mRNA in ABC-

DLBCLs.   
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KLHL6-Roquin2 axis controls NF-κB activation via TNFAIP3 

  TNFAIP3 is a ubiquitin-editing enzyme that inhibits the NF-κB signaling 

pathway via catalytic and non-catalytic inhibition of the IKK complex (Srinivasula and 

Ashwell, 2011). Since we observed that KLHL6 loss promotes TNFAIP3 mRNA down-

regulation, we expected that loss of KLHL6 might result into a higher NF-κB activation 

in ABC-DLBCLs. First, we investigated whether the TNFAIP3 protein levels are 

regulated in a similar way as the TNFAIP3 transcriptional levels. BCR stimulation 

induced degradation of Roquin2 (WT) with the corresponding up-regulation of TNFAIP3 

protein levels (Fig. 4.4A). More importantly, TNFAIP3 up-regulation upon BCR 

stimulation was abolished in cells stably expressing the non-degradable Roquin2 (Y691F) 

mutant, reflecting its transcriptional changes.    

 Since KLHL6 levels are also dependent on BCR activation and the KLHL6-

Roquin2 axis regulates the NF-κB pathway through TNFAIP3 decay, we hypothesized 

that KLHL6 itself is regulated by NF-κB. To explore this hypothesis, we analyzed 

previously published CHIP-seq datasets for NF-κB factors (Zhao et al., 2014) and found 

that p50, p52, RelA, RelB and cRel were indeed enriched at the KLHL6 gene locus. This 

suggests that KLHL6 is a bona fide NF-κB target gene (Fig. 4.4B). Correspondingly, 

IKK or a BTK inhibitor (ibrutinib) treatment (Davis et al., 2010) induced a down-

regulation of KLHL6 both at mRNA and protein levels (Fig. 4.4C). Interestingly, we 

found that KLHL6-/- cells are less sensitive to ibrutinib treatment (Fig. 4.4D). These data 

support a model in which BCR signaling induces KLHL6 up-regulation, Roquin2 
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degradation and TNFAIP3 mRNA stabilization. In agreement with this model, TNFAIP3 

protein levels were down-regulated in KLHL6-/- cells as compared to KLHL6+/+ cells, 

both at steady state and in response to BCR stimulation (Fig. 4.4E), phenocopying the 

effect of the non-degradable Roquin2 mutant on TNFAIP3 protein. Knockdown of 

Roquin2 in U2932 KLHL6-/- cells increased TNFAIP3 levels similar to those of KLHL6+/+ 

cells (Fig. 4.4F), suggesting a direct regulation of TNFAIP3 protein levels by Roquin2. 

Likewise, depletion of Roquin2 increased TNFAIP3 protein levels in HBL1 cells along 

with more robust up-regulation upon BCR stimulation (Fig. 4.4G). Correspondingly, re-

introduction of KLHL6 (WT) in KLHL6-/- cells increased TNFAIP3 levels (Fig. 4.4H).  

 Further, we investigated whether KLHL6-dependent down-regulation of 

TNFAIP3 would result in increased IKK activation utilizing IκBα phosphorylation as 

readout. Although IκBα was rapidly phosphorylated in both KLHL6+/+ and KLHL6-/- 

cells following BCR activation, the amplitude of phosphorylation was higher in KLHL6-/- 

cells, suggesting an increased activity of IKK (Fig. 4.4I). Importantly, the increase in 

phosphorylation was mitigated after re-introduction of KLHL6 (WT) (Fig. 4.4J). More 

importantly, the increase in phosphorylation correlated with more nuclear translocation of 

the NF-κB transcriptional factors in KLHL6-/- cells (Fig. 4.4K). The increase in nuclear 

translocation was partially mitigated by the concomitant knockdown of Roquin2 (Fig. 

4.4L). Correspondingly, we also observed that loss of KLHL6 increased DNA-binding of 

RelA to its target promoter, NFKBIA, and this effect was reversed upon concomitant 

knockdown of Roquin2 (Fig. 4.4M).   
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KLHL6 BTB-domain mutations and TNFAIP3 mutations are mutually exclusive in 

DLBCL patients 

If KLHL6-Roquin2 axis acts through TNFAIP3 as a main downstream effector, it 

is likely that loss of function mutation of KLHL6 would be mutually exclusive with 

TNFAIP3 inactivating mutation or deletion. Correspondingly, when we performed the 

mutual exclusivity analysis on BTB-associated KLHL6 mutations with TNFAIP3 

alterations in DLBCL patients, we observed no overlap with deleterious KLHL6 BTB-

mutations and TNFAIP3 biallelic deletion or mutation (Fig. 4.5A and 4.5B). Using a 

weighted test (Leiserson et al., 2016), we found there was a trend toward significance for 

KLHL6 and TNFAIP3 mutual exclusivity with the p-value of 0.085 (Table 4.3). Notably, 

there were cases where deleterious BTB-domain mutations of KLHL6 did co-occur with 

monoallelic deletion of TNFAIP3. This suggests that these mutations might cooperate to 

increase NF-κB activation in the cases where only one TNFAIP3 allele is lost. This is in 

line with the fact that patients with KLHL6 mutations tended to have a higher NF-κB 

activity, although this signature was not only restricted to KLHL6 mutated cases (Fig. 

4.5C).  

Next, we investigated whether the tumor suppressing effects of KLHL6 would be 

decreased in TNFAIP3-null ABC-DLBCLs (RCK8 and HLY1 cells). Loss of KLHL6 in 

RCK8 cells (Compagno et al., 2009) did not show any noticeable effects on cellular 

proliferation (Fig. 4.5D) and apoptosis (Fig. 4.5E). Correspondingly, knockdown of 

Roquin2 in HLY1 cells (TNFAIP3-null (Fontan et al., 2012)) resulted into a greater 

cellular apoptosis compared to HBL1 cells (TNFAIP3-WT) (Fig. 4.5F). All together, this 
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indicates the functional relevance of Roquin2 in cells harboring a wild-type TNFAIP3 

gene.  

 

 

Discussion 

Although KLHL6 mutations occur at a similar frequency in GCB-DLBCL, we 

have shown that the KLHL6-Roquin2 axis does not play a significant role in cell 

proliferation and survival in the GCB-DLBCL subtype. In contrast, ablation of KLHL6 in 

ABC-DLBCL cell lines promotes cell growth both in vitro and in vivo, supporting a 

tumor suppressor role of KLHL6. These findings are indeed consistent with low KLHL6 

expression levels correlating with poorer survival in ABC-DLBCL patients (Kunder et 

al., 2017; Leo Meriranta, 2016). Furthermore, expression of a non-degradable Roquin2 

(Y691F) mutant phenocopies loss of KLHL6 in ABC-DLBCLs and concomitant ablation 

of Roquin2 in KLHL6-/- cells results in an inhibition of cell proliferation. This pro-

proliferative effect depends on the ability of Roquin2 to bind RNA (Glasmacher et al., 

2010; Leppek et al., 2013; Murakawa et al., 2015; Schlundt et al., 2014; Vogel et al., 

2013). Although Roquin1 and Roquin2 are reported to be functionally redundant in the T-

cells (Vogel et al., 2013), no studies so far have examined the functional redundancy of 

Roquin proteins in mature B-cell cancers. The fact that KLHL6 targets only Roquin2 

suggests that, in the context of B-cell cancers, Roquin2 might play a non-redundant role 
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from Roquin1. Consistent with this hypothesis, the expression of Roquin2 is higher in 

germinal center B-cells, which is the origin of DLBCL (data not shown).  

Genetic screens based on loss of function via CRISPR technology have identified 

negative regulators of NF-κB (such as TNFAIP3, CD83 and CBLB) as tumor suppressors 

in ABC-DLBCL cells (Reddy et al., 2017). This suggests that the degrees of NF-κB 

activation in DLBCL cells can vary as a consequence of changes in the negative 

regulators of NF-κB. Furthermore, ABC-DLBCL cell lines can respond to BCR-

stimulation and further activate the NF-κB pathway (Yang et al., 2016). We have used 

U2932 cells, which harbors KLHL6 wild-type and a hemi-deletion of TNFAIP3 (Ferch et 

al., 2009) along with a basal level of NF-κB activation (Ferch et al., 2009). Although 

featured as a single wild–type allele, U2932 cells express detectable levels of TNFAIP3 

both at mRNA and protein levels. This emphasizes that TNFAIP3 is a relevant target of 

Roquin-mediated mRNA decay (Murakawa et al., 2015) in ABC-DLBCLs. BCR-

signaling triggers up-regulation of KLHL6 transcripts, leading to down-regulation of 

Roquin2 protein and de-repression of TNFAIP3 mRNA. We expect that KLHL6 

suppresses TNFAIP3 mRNA decay via Roquin2 degradation to establish a negative 

feedback loop and fine-tune the NF-κB signaling pathways (Fig 4.5G). Therefore, it is 

conceivable that loss of KLHL6 promotes BCR-signaling dependent NF-κB activation by 

down-regulation of TNFAIP3 mRNA and protein levels, disengaging this negative 

feedback loop in ABC-DLBCLs. Correspondingly, we found that DLBCL patients with 

BTB-domain mutations of KLHL6 are likely to have high NF-κB signatures. Therefore, 

KLHL6 mutation spectrum could serve as a resistance marker to NF-κB pathway 
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inhibitors such as ibrutinib (Davis et al., 2010), MLN4924 (Milhollen et al., 2010) or 

bortezomib (Yang and Staudt, 2015). Interestingly, we have found that loss of KLHL6 

predisposes ABC-DLBCL cells to ibrutinib desensitization. A complete characterization 

of KLHL6 loss in the ibrutinib mechanism remains to be further elucidated.  

TNFAIP3 genetic alterations including inactivation mutations and deletions are 

frequently observed in ABC-DLBCLs (Compagno et al., 2009; Davis et al., 2010; Kato et 

al., 2009; Lenz et al., 2008a). Several studies have shown that TNFAIP3 is a tumor 

suppressor by re-introduction of functional TNFAIP3 (WT) in TNFAIP3-null DLBCLs as 

the reconstitution causes cellular apoptosis and growth arrest (Honma et al., 2009; 

Schmitz et al., 2009). Interestingly, KLHL6 BTB-mutations and TNFAIP3 biallelic 

deletion or mutations do not co-occur in DLBCL patients, suggesting that these two 

genes might have similar downstream NF-κB effectors. The fact that there was a partial 

overlap between KLHL6 BTB-mutations and TNFAIP3 monoallelic deletion further 

supports a notion of possible synergy of these mutations towards increasing NF-κB 

activity. On the other hand, neither Roquin2 amplification nor sequence mutation of 

TNFAIP3 mRNA at the 3’ UTR of Roquin2 binding site has been observed in DLBCLs. 

This suggests that KLHL6 could play a tumor suppressor role via other mechanisms 

beyond de-regulatioin of Roquin2 proteolysis and TNFAIP3 mRNA decay. Furthermore, 

additional genetic lesions that could cooperate with the loss of KLHL6 in promoting 

tumorigenesis in B-cell cancers remain open questions. 
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Fig 4.1 KLHL6 is a tumor suppressor in ABC-DLBCL subtype 

(A) Loss of Roquin2 had no significant effects on cell proliferation in SUDHL10 cells. 

Left panel shows cell number counts of SUDHL10 expressing shRNA control or shRNAs 

targeting Roquin2 (#1 and #2) (mean± s.d., n=3 independent experiments). Whole cell 

lysates were analyzed by immunoblotting for the indicated proteins (Right panel). (B) 

Loss of Roquin2 had no significant effects on cell proliferation in VAL cells. Same as in 

(a) except that VAL cells were used. (C) Loss of Roquin2 had no significant effects on 

cell proliferation in BJAB cells. Same as in (a) except that BJAB KLHL6+/+ and KLHL6-/- 

were used. (D) Gene ontology (GO) analysis of genes regulated by the non-degradable 

Roquin2 (Y691F) mutant in BJAB cells. (E) Ablation of KLHL6 in all three ABC-

DLBCL cell lines resulted in an increase in cellular proliferation. Left panel shows cell 

counts of U2932-, OCI-LY10- and TMD8-Cas9 cells expressing the indicated gRNAs 

and carrying a puromycin cassette (mean±s.d., n=3 independent experiments, two-way 

ANOVA, *P value≤0.05; **P value≤0.01; *** P value≤0.001; ****P value≤0.0001). 

Cells were grown in media containing 1µg/ml (U2932 and OCI-LY10) or 4µg/ml 
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(TMD8) of F(ab’)2-IgM. Whole cell lysates were analyzed by immunoblotting for the 

indicated proteins (Right panel).  (F) Ablation of KLHL6 in all three ABC-DLBCL cell 

lines resulted in a decrease in cellular apoptosis. U2932-, OCI-LY10-, and TMD8-Cas9 

cells expressing the indicated gRNAs and carrying a GFP marker were grown as in (b) 

and analyzed for cell apoptosis rates. Apoptosis was quantified on GFP+ and Annexin V+ 

cells (mean±s.d., n=3 independent experiments, one-way ANOVA,  **P value≤0.01; *** 

P value≤0.001). (G) Ablation of KLHL6 in U2932 cells resulted in an increase in cell 

numbers and large colonies in 3D cultures. U2932-Cas9 cells were infected with 

lentiviruses encoding scrambled gRNA or gRNAs against KLHL6 exon 1 carrying a 

puromycin cassette. Whole cell lysates were analyzed by immunoblotting for the 

indicated proteins (left top panel). Left bottom panel shows representative image of 

U2932 cell colonies expressing indicated gRNAs and plated into a matrigel. After 14 

days, the matrigel was dissolved and recovered. Cells were counted and plotted as shown 

on the right panel (mean±s.d., n=4 independent experiments, one-way ANOVA, ****P 

value≤0.0001). Scale bar 150µm. (H) Ablation of KLHL6 in U2932 cells resulted in an 

increase in cellular proliferation. U2932 cells were infected with lentiviruses encoding 

the indicated shRNAs carrying a puromycin cassette. Whole cell lysates were analyzed 

by immunoblotting for the indicated proteins (left panel). Right panel shows MTS assay 

for U2932 cells infected with lentiviruses encoding the indicated shRNAs and grown in 

media containing 1µg/ml of F(ab’)2-IgM. Values were normalized to the shCTRL cells at 

time 0 hour and set as 100% (mean±s.d., n=3 independent experiments, two-way 

ANOVA; *** P value≤0.001, ****P value≤0.0001). (I) Ablation of KLHL6 in OCI-
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LY10 cells resulted in an increase in cellular growth and survival. OCI-LY10 cells were 

infected with lentiviruses encoding indicated shRNAs carrying a puromycin cassette. 

Whole cell lysates were analyzed by immunoblotting for the indicated proteins (left 

panel). Middle panel shows representative image of OCI-LY10 cell colonies infected 

with indicated shRNAs and plated into a matrigel. After 14 days, the matrigel was 

dissolved and recovered. Cells were counted and plotted as shown on the right panel 

(mean±s.d., n=4 independent experiments, one-way ANOVA, ****P value ≤0.0001). 

Scale bar 150µm. (J) Expression of BTB-mutants phenocopies loss of KLHL6 in 

promoting ABC-DLBCL cell proliferation in vitro. U2932 KLHL6-/- cells were infected 

with retroviruses encoding an empty vector (EV) or KLHL6 WT or BTB-mutants (L65P, 

S94I and F97L). Whole cell lysates were analyzed by immunoblotting for the indicated 

proteins (left panel). Right panel shows cell growth as measured by counting the number 

of cells over time. Error bars represent s.d., n=3. Asterisks indicate: ****P value ≤0.001 

calculated with ANOVA. (K) Expression of KLHL6 BTB-mutants phenocopies loss of 

KLHL6 in promoting ABC-DLBCL growth in xenograft models. U2932 KLHL6-/- cells 

were infected with retroviruses encoding an empty vector (EV), KLHL6 (WT) or KLHL6 

(S94I) prior to sub-cutaneous injection of NOD/SCID/IL2Rγ-/- (NSG) mice. Left panel 

shows a picture of the tumors after the experimental endpoint. Middle panel shows tumor 

volume calculated by caliper measurements. Right panel shows tumor weight calculated 

by the weight of the excised tumors at the experimental endpoint. Error bars represent 

s.d., n=5. Asterisks indicate: *P value ≤0.05, **P value ≤0.01, and n.s. indicates non-

significant P value. Statistical analysis was performed using the t-test. (L) Low level of 
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KLHL6 expression correlates with poor survival in ABC-DLBCL patients. Gene 

expression microarray data (diffuse large B-cell lymphoma tumors) were obtained from 

GSE10846, GSE34171 and GSE31312 (Lenz et al., 2008f; Monti et al., 2012; Visco et 

al., 2012). Kaplan–Meier analyses of ABC-DLBCL patients based on KLHL6 expression 

is shown (n=367, cases were dichotomized into being above or below the median 

expression level of KLHL6 expression within each dataset to avoid confounding batch 

effects). Statistical analysis was performed using the Log-rank (Mantel-Cox) test. 
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Fig 4.2 Roquin2 stabilization promotes ABC-DLBCL growth and survival 

(A) Stabilization of Roquin2 promotes ABC-DLBCL growth in xenograft models. U2932 

cells were infected with retroviruses encoding HA-Roquin2 (WT) or HA-Roquin2 

(Y691F) and 1 x 107 cells were sub-cutaneously injected in NSG mice. On the left panel, 

tumor volume was calculated by caliper measurements. On the right panel, tumor weight 

was determined on the excised tumors at the experimental endpoint. Error bars represent 

s.d., n=3. Statistical analysis was performed using ANOVA and the t-test for tumor 

volume and tumor weight, respectively. Asterisks indicate: *P value ≤0.05, **P value 

≤0.01, *** P value ≤0.001, ****P value ≤0.001). (B) Roquin2 (Y691F) protein levels are 

similar to endogenous Roquin2 protein levels in KLHL6-/- cells. Indicated amounts of 

recombinant Roquin2 (set as the standard) along with whole cell lysates from U2932 

KLHL6+/+ and KLHL6-/- cells (clone-derived) (left panel) or U2932 stably expressing HA-

Roquin2 (WT) and HA-Roquin2 (Y691F) cells (middle panel) were analyzed for 

immunoblotting. Right panel shows intensity of quantified Roquin2 bands compared to 

the standard. A representative blot from one experiment is shown. (C) Loss of KLHL6 
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promotes cell proliferation in a Roquin2-dependent manner in U2932 cells. Whole cell 

lysates were analyzed by immunoblotting for the indicated proteins (left panel). Right 

panel shows cell number counts of GFP-sorted U2932 KLHL6+/+ and KLHL6-/- (clone-

derived) cells infected with scramble shRNA (shCTRL) or shRNA targeting Roquin2 

(ShRoquin2#1 or #2) carrying a GFP marker. GFP+ cells were grown in media containing 

1µg/ml of F(ab’)2-IgM. (mean±s.d., n=3 independent experiments, two-way ANOVA, 

****P value≤0.0001). A representative blot from two independent experiments is shown. 

(D) Same as (c) except that OCI-LY10 KLHL6+/+ and KLHL6-/- cells were utilized. (E) 

Loss of Roquin2 increased toxicity of KLHL6-/- cells. GFP+-live OCI-LY10 KLHL6+/+ 

and KLHL6-/-(clone-derived) cells were infected with lentiviruses encoding the indicated 

shRNAs carrying a GFP marker and monitored over time by flow cytometry. Cells were 

grown in media containing 2µg/ml of F(ab’)2-IgM and normalized to the shCTRL cells 

set as 100% (mean±s.d., n=3 independent experiments, two-way ANOVA, **P 

value≤0.01; ****P value≤0.0001). 
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Figure 4.3 Stabilization of Roquin2 down-regulate BCR responsive genes 

(A) Concomitant deletion of the ROQ domain abolished the proliferative effect of 

Roquin2 (Y691F). U2932 cells were infected with retroviruses encoding HA-Roquin2 

(WT), HA-Roquin2 (Y691F) or HA-Roquin2 (Y691FΔROQ). Whole cell lysates were 

analyzed by immunoblotting for the indicated proteins (left panel). Middle panel shows a 

representative image of cell colonies. Cells were plated into a matrigel matrix and were 

allowed to grow for 14 days. After 14 days, the matrigel matrix was dissolved with 

dispase to recover the cells, which were counted and plotted on the right panel. Error bars 

represent s.d., n=4. Scale bar 150µm. (B) Identification of mRNA targets affected by 

stabilization of Roquin2 and BCR stimulation. The volcano plot (left panel) shows the 

mRNAs (blue) down-regulated in U2932 cells stably expressing Roquin2 (Y691F) as 

compared to Roquin2 (WT) after 12 hours of treatment with 10 µg/ml of F(ab’)2-IgM 

(log2(fold-change) < –0.9; P value<0.001; n=3). Down-regulated mRNAs were further 
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plotted in an MA (log ratio, mean average)-plot (right panel) to identify mRNAs (red) up-

regulated upon treatment with F(ab’)2-IgM in cells expressing Roquin (WT) (log2(fold-

change)>1;P value<0.001). (C) 64 genes are BCR responsive transcripts controlled by 

Roquin2 degradation. A venn diagram shows the overlap between genes down-regulated 

by expression of non-degradable Roquin2 (Y691F) mutant and BCR responsive genes. 

(D) Gene ontology (GO) analysis was performed on genes regulated by the non-

degradable Roquin2 (Y691F) mutant. Bar plot shows the −log10 of the P value of the top 

10 enriched GO terms of genes regulated by Roquin2 (Y691F) as determined by the 

hypergeometric distribution. -reg., negative regulation; + reg., positive regulation. (E) 

The list of Roquin2-regulated genes ranked by the percentage of genetic 

alteration/mutation in human DLBCLs from the TCGA database and the base mean 

expression from the RNA-seq analysis. The cut-off was set at 6% for genetic mutation 

frequency. “Yes” indicates down-regulation of transcript is dependent on the ROQ 

domain of Roquin2 and rescued at least 70%; “No” indicates down-regulation of 

transcript is not dependent and not rescued. (F) Secondary q-PCR screening for mRNAs 

levels of U2932 cells stably expressing HA-Roquin2 (WT), HA-Roquin2 (Y691F) or 

HA-Roquin2 (Y691FΔROQ). The cells were treated with 10µg/ml of F(ab’)2-IgM for 12 

hours and the value for each PCR product present in HA-Roquin2 (WT) cells was set as 

100%. Rescued transcripts are considered as the ones whose mRNA levels reach at least 

70% of the Roquin2 (WT) control (dashed line in the graph=70% rescue) (mean±s.d., 

n=3 independent experiments). (G) TNFAIP3 mRNA levels are regulated by Roquin2 

degradation and mRNA decay activity. U2932 cells stably expressing encoding HA-
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Roquin2 (WT), HA-Roquin2 (Y691F) or HA-Roquin2 (Y691FΔROQ) were treated with 

10 µg/ml of F(ab’)2-IgM for indicated times. Levels of the indicated mRNAs were 

analyzed by real time PCR. A representative experiment from two biological replicates is 

shown. Value for PCR product present at time 0 hour was arbitrarily set as 1 for each 

condition. (H) Ablation of KLHL6 shortened the half-life of TNFAIP3. U2932 cells were 

electroporated with indicated siRNAs (left panel) and treated with actinomycinD for the 

indicated times for qPCR analysis of TNFAIP3 mRNA. The value for PCR product 

present at time 0 hour was arbitrarily set as 100% (mean±s.d., n=3 independent 

experiments, two-way ANOVA, **P value ≤0.01, ****P value≤0.0001, n.s, not 

significant). (I) Overexpression of KLHL6 increases the half-life of TNFAIP3. Same 

analysis was performed in VAL cells expressing KLHL6 under a DOX-inducible 

promoter. Cells were pre-treated with DOX for 12 hours and actinomycinD for the 

indicated times (mean±s.d., n=3 independent experiments, two-way ANOVA, *P value 

≤0.05; *** P value≤0.001).  
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Figure 4.4 KLHL6-Roquin2 axis controls NF-κB activation via TNAFIP3 

(A) Roquin2 stabilization induces a decrease in TNFAIP3 protein levels. U2932 cells 

stably expressing HA-Roquin2 (WT) or HA-Roquin2 (Y691F) were treated with 10µg/ml 

of F(ab’)2-IgM for the indicated times. Whole cell lysates were analyzed by 

immunoblotting for the indicated proteins. (B) ChIP-seq peaks were analyzed and 

visualized by using University of California Santa Cruz (UCSD) Genome browser (GEO 

Series accession GSE55105). RPM, reads per million mapped. (C) KLHL6 is a bona fide 

NF-κB target gene. Left panel shows analysis of level of KLHL6 mRNA by qPCR in 
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U2932 cells treated with DMSO, 10µM of IKK inhibitor (IKK-16) or 5µM of BTK 

inhibitor (ibrutinib) for 6 hours. The value for PCR product present without treatment 

(DMSO) was set as 100% (mean±s.d., n=3 independent experiments, one-way ANOVA, 

*** P value≤0.001; ****P value≤0.0001). Whole cell lysates were analyzed by 

immunoblotting for the indicated proteins (Right panel). (D) KLHL6-/- cells are less 

sensitive to ibrutinib. U2932 cells KLHL6+/+ and KLHL6-/- treated with increasing 

amounts of ibrutinib for 48 hours, and cell proliferation was analyzed by MTS assay. 

Values were normalized to the non-treated cells and set as 100% (mean±s.d., n=3 

independent experiments, two-way ANOVA; *P value≤0.05, **P value≤0.01, *** P 

value≤0.001, ****P value≤0.0001). (E) Loss of KLHL6 induces a decrease in TNFAIP3 

protein levels. U2932 cells KLHL6+/+ or KLHL6-/- were treated with 10µg/ml of F(ab’)2-

IgM for the indicated times. Whole cell lysates were analyzed by immunoblotting for the 

indicated proteins. (F) Knockdown of Roquin2 in U2932 KLHL6-/- cells rescues 

TNFAIP3 levels. GFP-sorted U2932 KLHL6+/+, KLHL6-/- or KLHL6-/- cells were infected 

with lentiviruses encoding the indicated shRNAs carrying a GFP marker and treated with 

10 µg/ml of F(ab’)2-IgM for 6 hours. The whole cell lysates were analyzed by 

immunoblotting for the indicated proteins. (G) Knockdown of Roquin2 increases 

TNFAIP3 levels in HBL1 cells. HBL1 cells were electroporated with indicated siRNAs 

and treated as in (E) for the indicated times. The whole cell lysates were analyzed by 

immunoblotting for the indicated proteins. (H) Re-expression of KLHL6 (WT) in U2932 

KLHL6-/- cells rescues TNFAIP3 levels. GFP-sorted U2932 KLHL6-/- (clone-derived) 

cells were infected with retroviruses encoding empty vector (EV) or KLHL6 (WT) 
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carrying a GFP marker and treated with 10µg/ml of F(ab’)2-IgM for 6 hours. The whole 

cell lysates were analyzed by immunoblotting for the indicated proteins. (I) Loss of 

KLHL6 enhances phosphorylation of IκBα. U2932 cells KLHL6+/+ or KLHL6-/- were 

treated with 10µg/ml of F(ab’)2-IgM for the indicated times. Whole cell lysates were 

analyzed by immunoblotting for the indicated proteins. (J) Re-expression of KLHL6 

(WT) in U2932 KLHL6-/- cells mitigates IκBα phosphorylation. Same as in (h) except 

that cells were treated with 10µg/ml F(ab’)2-IgM for the indicated times (min). (K) Loss 

of KLHL6 promotes nuclear translocation of NF-κB transcription factors. U2932 cells 

KLHL6+/+ or KLHL6-/- were fractionated into cytoplasmic and nuclear extracts. The 

indicated cell lysates were analyzed by immunoblotting for the indicated proteins. (L) 

Concomitant knockdown of Roquin2 in KLHL6-/- cells mitigated nuclear translocation of 

NF-κB transcription factors. GFP-sorted U2932 KLHL6+/+, KLHL6-/- or KLHL6-/- cells 

infected with lentiviruses encoding the indicated shRNAs carrying a GFP marker were 

fractionated into cytoplasmic and nuclear extracts and analyzed by immunoblotting for 

the indicated proteins. (M) Loss of KLHL6 increases RelA DNA-binding at the NFKBIA 

promoter. U2932 KLHL6+/+, KLHL6-/- or KLHL6-/- cells were infected with indicated 

shRNAs and analyzed for RelA binding degrees to its target NFBKIA promoter by 

chromatin immunoprecipitaiton followed by qPCR. Data are displayed as fold 

enrichment relative to IgG control. A representative graph from two independent 

experiments is shown.  
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Figure 4.5 KLHL6 BTB-domain mutations and TNFAIP3 mutations are mutually 

exclusive in DLBCL patients 

(A) BTB-associated mutations of KLHL6 with TNFAIP3 alterations do not overlap in 

DLBCLs. Top panel shows tumors sequenced at UNMC (Idoia et al., 2016) and DCI 

(Reddy et al., 2017) (n=1175) with deleterious mutations of KLHL6 in the BTB-domain 
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and TNFAIP3 mutations. Bottom panel shows the TNFAIP3 subset with biallelic and 

monoallelic deletions. (B) Some overlaps occur between deleterious BTB-domain 

mutations of KLHL6 and monoallelic deletion of TNFAIP3. A heat map shows the 

presence of biallelic deletion (dark blue), monoallelic deletion (light blue) and 

monoallelic mutation (green) of TNFAIP3 in DLBCL tumors sequenced at UNMC (Idoia 

et al., 2016) and DCI (Reddy et al., 2017) (n=1175). Deleterious mutations of KLHL6 

BTB-domain are shown in these same cases. (C) The DLBCL patients with KLHL6 

mutations exhibit higher NF-κB signatures. A heat map shows the tumor gene alterations 

matched with gene expression profiling data available at UNMC. Single sample gene set 

enrichment analysis (GSEA) was utilized to infer NF-κB activity using expression of 

target gene sets from the molecular signatures database (NFκB_Q and NFκB_C) (Green 

et al., 2014; Lenz et al., 2008f). The enrichment score is displayed as a row-normalized 

heat map. (D) Tumor suppressor role of KLHL6 is abolished in TNFAIP3-null ABC-

DLBCLs. GFP-sorted RCK8 cells expressing Cas9, the indicated gRNAs and a GFP 

marker, were grown in media containing 1µg/ml of F(ab’)2-IgM and cell numbers were 

counted and graphed (right panel) (mean±s.d., n=3 independent experiments, two-way 

ANOVA, n.s, not significant). Whole cell lysates were analyzed by immunoblotting for 

the indicated proteins (Left panel). (E) Tumor suppressor role of KLHL6 is reduced in 

TNFAIP3-null ABC-DLBCLs. Cells from (d) were analyzed for cell apoptosis rates 

(mean±s.d., n=3 independent experiments, one-way ANOVA, n.s, not significant). (F) 

Elevated apoptosis by knockdown of Roquin2 is only observed in cells harboring a 

functional TNFAIP3 gene. GFP+ and AnnexinV+ HBL1 and HLY-1 cells expressing the 
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indicated shRNAs were for cell apoptosis rates (mean±s.d., n=3 independent 

experiments, one-way ANOVA, *P value≤0.05; *** P value≤0.001, n.s, not significant). 

(G) KLHL6 is a tumor suppressor in ABC-DLBCLs. In ABC-DLBCL cells, active BCR 

signaling sustains the NF-κB pathway. KLHL6 is a target of NF-κB and promotes 

degradation of Roquin2 and TNFAIP3 mRNA stabilization, establishing a negative 

feedback loop on NF-κB activity (left panel). Loss of KLHL6 disengages this negative 

feedback by promoting Roquin2 stabilization, TNFAIP3 mRNA decay and higher IKK 

activity, which further enhances the NF-κB activity (right panel).   
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Data set Cell type # Reliplicates Accession 
number 

RNA-seq U2932 cells 
expressing Roquin2 
(WT) and Roquin2 
(Y691F) with 0h 
and 12h of 10µg/ml 
of anti-IgM 
treatment 

3 GSE93675 

 

Table 4.1 RNA-seq data sets generated in this dissertation 

The table lists the mRNA fold changes in U2932 cells expressing Roquin2 (Y691F) vs 

Roquin2 (WT) upon 12 hours treatment with 10 µg/ml of F(ab’)2-IgM. Quantification 

analysis of RNA reads was performed using of R packages DEseq2 (n= 3 independent 

experiments) (Love et al., 2014). 
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GO ID GO class GO term P-value Enrichment FDR (%)

GO:0006954 BP inflammatory response 2.29E-05 7.43 0.03528
GO:0046718 BP viral entry into host cell 2.65E-05 16.47 0.04078
GO:0090084 BP negative regulation of inclusion body assembly 3.03E-05 59.03 0.04668
GO:0042026 BP protein refolding 6.42E-05 47.23 0.09881
GO:0032757 BP positive regulation of interleukin-8 production 1.16E-04 39.36 0.17893
GO:0050830 BP defense response to Gram-positive bacterium 1.19E-04 19.04 0.18228
GO:0006986 BP response to unfolded protein 1.71E-04 17.36 0.26353
GO:0032755 BP positive regulation of interleukin-6 production 2.36E-04 31.49 0.36314
GO:0070370 BP cellular heat acclimation 4.08E-04 88.55 0.62632
GO:0034605 BP cellular response to heat 4.92E-04 24.86 0.75366
GO:0031295 BP T cell costimulation 5.60E-04 12.83 0.85748
GO:0045080 BP positive regulation of chemokine biosynthetic process 6.77E-04 70.84 1.03623
GO:0007267 BP cell-cell signaling 9.61E-04 11.14 1.46831
GO:0006955 BP immune response 9.89E-04 5.99 1.51131
GO:0070374 BP positive regulation of ERK1 and ERK2 cascade 0.0017 9.52 2.62922
GO:0042110 BP T cell activation 0.0017 16.29 2.653
GO:0032496 BP response to lipopolysaccharide 0.0035 7.87 5.21571
GO:0050731 BP positive regulation of peptidyl-tyrosine phosphorylation 0.0035 12.76 5.31
GO:0043536 BP positive regulation of blood vessel endothelial cell migration 0.0036 32.20 5.40275
GO:0051092 BP positive regulation of NF-kappaB transcription factor activity 0.0054 6.95 8.04951
GO:0050829 BP defense response to Gram-negative bacterium 0.0059 25.30 8.65474
GO:0001666 BP response to hypoxia 0.0064 6.63 9.40337
GO:0008284 BP positive regulation of cell proliferation 0.0068 4.07 9.96367

GO:2001240 BP
negative regulation of extrinsic apoptotic signaling pathway
in absence of ligand 0.0086 20.84 12.4802

GO:0071222 BP cellular response to lipopolysaccharide 0.0107 8.59 15.3085
GO:0042594 BP response to starvation 0.0119 17.71 16.7694
GO:0031663 BP lipopolysaccharide-mediated signaling pathway 0.0143 16.10 19.8324
GO:0032729 BP positive regulation of interferon-gamma production 0.0155 15.40 21.413
GO:0043406 BP positive regulation of MAP kinase activity 0.0155 15.40 21.413
GO:0045785 BP positive regulation of cell adhesion 0.0155 15.40 21.413

GO:0002925 BP
positive regulation of humoral immune response
mediated by circulating immunoglobulin 0.0166 118.07 22.7502

GO:0048566 BP embryonic digestive tract development 0.0166 118.07 22.7502

GO:0002876 BP
positive regulation of chronic inflammatory response 
to antigenic stimulus 0.0166 118.07 22.7502

GO:1902380 BP positive regulation of endoribonuclease activity 0.0166 118.07 22.7502

GO:1904722 BP
positive regulation of mRNA endonucleolytic cleavage 
involved in unfolded protein response 0.0166 118.07 22.7502

GO:0071230 BP cellular response to amino acid stimulus 0.0169 14.76 23.0212
GO:0006959 BP humoral immune response 0.0182 14.17 24.6533
GO:0043410 BP positive regulation of MAPK cascade 0.0226 12.65 29.656
GO:0030890 BP positive regulation of B cell proliferation 0.0226 12.65 29.656
GO:0048661 BP positive regulation of smooth muscle cell proliferation 0.0241 12.21 31.3475

GO:0038033 BP
positive regulation of endothelial cell chemotaxis by 
VEGF-activated vascular endothelial growth factor receptor signaling pathway 0.0249 78.71 32.1053

GO:0070434 BP
positive regulation of nucleotide-binding oligomerization domain 
containing 2 signaling pathway 0.0249 78.71 32.1053

GO:0031397 BP negative regulation of protein ubiquitination 0.0274 11.43 34.747
GO:0033209 BP tumor necrosis factor-mediated signaling pathway 0.0329 5.62 40.2216
GO:0046641 BP positive regulation of alpha-beta T cell proliferation 0.0330 59.03 40.3284
GO:0010038 BP response to metal ion 0.0330 59.03 40.3284
GO:0007568 BP aging 0.0339 5.56 41.1695
GO:0030968 BP endoplasmic reticulum unfolded protein response 0.0380 9.57 44.8682
GO:0019221 BP cytokine-mediated signaling pathway 0.0380 9.57 44.8682
GO:0045766 BP positive regulation of angiogenesis 0.0399 9.32 46.517
GO:0045732 BP positive regulation of protein catabolic process 0.0399 9.32 46.517
GO:0050869 BP negative regulation of B cell activation 0.0411 47.23 47.5563

GO:1901029 BP
negative regulation of mitochondrial outer membrane permeabilization 
involved in apoptotic signaling pathway 0.0411 47.23 47.5563

GO:1903265 BP positive regulation of tumor necrosis factor-mediated signaling pathway 0.0411 47.23 47.5563
GO:0010460 BP positive regulation of heart rate 0.0411 47.23 47.5563
GO:0043433 BP negative regulation of sequence-specific DNA binding transcription factor activity 0.0438 8.86 49.7626

Background: genes with average expression > 1 RPKM
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Table 4.2 GO enrichments of Roquin2 regulated genes 

U2932 cells expressing Roquin2 (Y691F) vs Roquin2 (WT) were treated with 10 µg/ml 

of F(ab’)2-IgM for 12 hrs (n= 3 independent experiments). GO analyses were performed 

using version 6.8 of the DAVID web server (Huang et al., 2009a, c). Exact P values are 

shown. 

  

GO:0070936 BP protein K48-linked ubiquitination 0.0478 8.43 52.9269
GO:0033138 BP positive regulation of peptidyl-serine phosphorylation 0.0478 8.43 52.9269
GO:0006972 BP hyperosmotic response 0.0491 39.36 53.9094
GO:0097190 BP apoptotic signaling pathway 0.0520 8.05 55.9972
GO:0050862 BP positive regulation of T cell receptor signaling pathway 0.0570 33.73 59.4935
GO:0043123 BP positive regulation of I-kappaB kinase/NF-kappaB signaling 0.0613 4.37 62.1967
GO:0000122 BP negative regulation of transcription from RNA polymerase II promoter 0.0621 2.23 62.7059
GO:0032722 BP positive regulation of chemokine production 0.0649 29.52 64.4016
GO:0010941 BP regulation of cell death 0.0649 29.52 64.4016
GO:0044130 BP negative regulation of growth of symbiont in host 0.0649 29.52 64.4016
GO:0048010 BP vascular endothelial growth factor receptor signaling pathway 0.0698 6.81 67.161
GO:0006928 BP movement of cell or subcellular component 0.0698 6.81 67.161
GO:0007165 BP signal transduction 0.0714 2.02 68.0057
GO:0060333 BP interferon-gamma-mediated signaling pathway 0.0722 6.68 68.4184
GO:0002548 BP monocyte chemotaxis 0.0727 26.24 68.7155
GO:0043122 BP regulation of I-kappaB kinase/NF-kappaB signaling 0.0727 26.24 68.7155
GO:0003009 BP skeletal muscle contraction 0.0805 23.61 72.5071
GO:0007193 BP adenylate cyclase-inhibiting G-protein coupled receptor signaling pathway 0.0805 23.61 72.5071
GO:0045662 BP negative regulation of myoblast differentiation 0.0805 23.61 72.5071
GO:0042787 BP protein ubiquitination involved in ubiquitin-dependent protein catabolic process 0.0864 3.78 75.1133
GO:0001819 BP positive regulation of cytokine production 0.0882 21.47 75.8394
GO:0006970 BP response to osmotic stress 0.0882 21.47 75.8394
GO:0042981 BP regulation of apoptotic process 0.0929 3.66 77.6925
GO:0007275 BP multicellular organism development 0.0931 2.87 77.7523
GO:0035924 BP cellular response to vascular endothelial growth factor stimulus 0.0958 19.68 78.7682
GO:0010628 BP positive regulation of gene expression 0.0962 3.61 78.9129
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#Gene set WRE (Saddlepoint) P-value
KLHL6, TP53 0.007296593
KLHL6, MLL2 0.009864889
ARID1B, KLHL6 0.013723417
INO80, KLHL6 0.071010277
KLHL6, TNFAIP3 0.085828689
BCL6, KLHL6 0.085828689
BTG1, KLHL6 0.116142985
CHD1, KLHL6 0.127426758
KLHL6, SPEN 0.142065165
KLHL6, TAF1 0.146780171
CCND3, KLHL6 0.154272416
KLHL6, NF1 0.154272416
KLHL6, PRDM1 0.161910743
ARID5B, KLHL6 0.161910743
DDX3X, KLHL6 0.161910743
KLHL6, SETD5 0.170053834
KLHL6, TET2 0.185069315
KLHL6, MCL1 0.186363405
CDKN2A, KLHL6 0.186363405
BTK, KLHL6 0.197108625
CBLB, KLHL6 0.217375064
KLHL6, UBR5 0.228611023
DDX10, KLHL6 0.228611023
KLHL6, MLL3 0.230162112
KLHL6, MEF2B 0.236302759
KLHL6, MEF2BNB-MEF2B 0.236302759
KLHL6, PTPN6 0.25167532
IKBKB, KLHL6 0.25167532
KLHL6, TMSB4X 0.264893745
KLHL6, TOX 0.264893745
KLHL6, ZFAT 0.264893745
KLHL6, MAGT1 0.264893745
CD58, KLHL6 0.264893745
DICER1, KLHL6 0.264893745
GNAI2, KLHL6 0.264893745
KLHL6, TNFRSF14 0.271707356
KLHL6, WAC 0.276026659
CHD8, KLHL6 0.283441479
KLHL6, MYB 0.291571234
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#Gene set WRE (Saddlepoint) P-value
HRAS, KLHL6 0.291571234
CD22, KLHL6 0.291571234
KLHL6, RARA 0.306825911
BRAF, KLHL6 0.306825911
HIST1H2BC, KLHL6 0.306825911
CD79B, KLHL6 0.313455867
DNMT3A, KLHL6 0.313455867
KLHL6, STAT5B 0.321352706
BCL7A, KLHL6 0.331514193
KLHL6, RUNX1 0.339731515
KLHL6, MAP2K1 0.358658894
KLHL6, ZNF608 0.366771011
KLHL6, LIN54 0.398063455
CXCR4, KLHL6 0.398063455
CREBBP, KLHL6 0.405364718
IRF8, KLHL6 0.408385843
ACTB, KLHL6 0.415044201
ATR, KLHL6 0.431749456
KCMF1, KLHL6 0.439622268
KLHL6, PTEN 0.439622268
KLHL6, TGFBR2 0.439622268
EZH2, KLHL6 0.442419554
ETS1, KLHL6 0.459153037
KLHL6, STAT3 0.472592121
KLHL6, ZBTB7A 0.472592121
EP300, KLHL6 0.483090559
KLHL6, MAP4K4 0.487558531
KLHL6, UBE2A 0.487558531
CASP8, KLHL6 0.493686666
CD70, KLHL6 0.496622919
B2M, KLHL6 0.496622919
IL16, KLHL6 0.502377438
DCAF6, KLHL6 0.502377438
JAK1, KLHL6 0.51773029
KLHL6, PTPRK 0.51773029
JUNB, KLHL6 0.51773029
CDC73, KLHL6 0.518526498
KLHL6, SGK1 0.530599488
KLHL6, SMARCA4 0.530599488
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#Gene set WRE (Saddlepoint) P-value
KLHL6, MGA 0.530599488
KLHL6, NFKBIA 0.532770403
KLHL6, RHOA 0.532770403
GOLGA5, KLHL6 0.532770403
GNAS, KLHL6 0.540277952
KLHL6, PIM2 0.565577169
BCL10, KLHL6 0.565577169
ATM, KLHL6 0.57551293
KLHL6, RB1 0.587675935
IKZF3, KLHL6 0.598550468
KLHL6, MECOM 0.598550468
FOXO1, KLHL6 0.604824556
HNRNPU, KLHL6 0.615881531
CARD11, KLHL6 0.624780346
KLHL6, MYC 0.625882038
KLHL6, RRAGC 0.649495031
JAK3, KLHL6 0.650624883
BIRC6, KLHL6 0.655684962
FAM5C, KLHL6 0.661914103
KLHL6, PIK3CD 0.663416907
KLHL6, PHF6 0.667627082
KLHL6, POU2F2 0.667627082
EBF1, KLHL6 0.679660224
KLHL6, TMEM30A 0.688893946
KLHL6, MYD88 0.70470071
KLHL6, ZNF292 0.706970359
KLHL6, MSH2 0.715851297
KLHL6, NCOR1 0.715851297
ETV6, KLHL6 0.715851297
FOXP1, KLHL6 0.72033584
KLHL6, S1PR2 0.72033584
KLHL6, ZEB2 0.729192934
FUBP1, KLHL6 0.737060758
ARID1A, KLHL6 0.750943182
FAS, KLHL6 0.757016267
KLHL6, STAT6 0.763453997
KLHL6, TBL1XR1 0.763453997
KLHL6, NOTCH2 0.763849993
CD83, KLHL6 0.765570173
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Table 4.3 Mutual exclusive analyses of KLHL6 BTB-mutations in DLBCL 

#Gene set WRE (Saddlepoint) P-value
KLHL14, KLHL6 0.774720583
FBXW7, KLHL6 0.776384508
KLHL6, TCL1A 0.776384508
BTBD3, KLHL6 0.792343414
HNRNPD, KLHL6 0.792343414
CIITA, KLHL6 0.792343414
KLHL6, ZFX 0.792343414
KLHL6, MSH6 0.813216926
KLHL6, PIK3R1 0.813216926
HIST1H1E, KLHL6 0.831918553
KLHL6, MTOR 0.836996935
KLHL6, SETD1B 0.839606965
GNA13, KLHL6 0.839606965
KLHL6, TIPARP 0.847348818
KLHL6, SYK 0.847348818
KLHL6, SETD2 0.850989763
KLHL6, MARK1 0.859572181
KLHL6, SF3B1 0.870536694
ANKRD17, KLHL6 0.873998924
DUSP2, KLHL6 0.880002839
IRF4, KLHL6 0.895653425
KLHL6, MET 0.900090752
KLHL6, NFKB2 0.90060563
KLHL6, NFKBIE 0.903203366
KLHL6, XPO1 0.908495003
KLHL6, PAX5 0.908495003
KLHL6, YY1 0.927248212
CHST2, KLHL6 0.945672185
BCL2, KLHL6 0.96295551
KLHL6, SOCS1 0.986246166
BTG2, KLHL6 0.986948128
KLHL6, PIM1 0.987391459
KLHL6, KRAS 0.990970456
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The Weighted Exclusivity Test (WExT, http://compbio.cs.brown.edu/software/) 

(Leiserson et al., 2016) was utilized to calculate the mutual exclusivity significance of 

deleterious BTB-domain mutations of KLHL6 with the 150 genetic drivers of DLBCL 

described in the DCI datasets (n=1001) (Reddy et al., 2017). Exact P values are shown. 
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CHAPTER 5 : TYROSINE PHOSPHATASE PTPN14 REGULATES ROQUIN2 

PROTEIN STABILITY 

 

Chapter summary 

Research described in this chapter was performed in collaboration with the 

laboratories of Dr. Michael Washburn. Mass Spectrometry (MS) sample preparations 

were carried out in our laboratory, and Anita Saraf and Laurance Florens performed MS 

analysis in Dr. Michael Washburn laboratory (Stowers Institute).  

The work described in this chapter is all unpublished and forms the body of 

manuscript that I am currently planning to submit in a small journal. This chapter is 

focused on elucidating regulation for Roquin2 protein stability by studying post-

translational modification of tyrosine 691 residue of Roquin2. 

 

Jaewoo Choi, Anita Saraf, Laurence Florens, Michael P. Washburn, Luca Busino. 

Tyrosine phosphatase PTPN14 regulates Roquin2 protein stability 
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Introduction 

Protein post-translational modifications (PTMs) regulate a variety of biological 

processes such as switching protein activity, intracellular trafficking of transporters, 

signal transduction, and other fundamental cellular mechanisms (Hunter, 2007; Moeller 

et al., 2010; Nguyen et al., 2011). Phosphorylation and ubiquitylation are most 

predominant and ubiquitous PTMs in eukaryotic proteaomes. Crosstalk between 

phosphorylation and ubiquitylation can take many different forms. For example, 

phosphorylation can activate E3 ligase activity or be a priming event to promote the 

subsequent ubiquitylation and degradation of the substrates (Fuchs et al., 1996; Khosravi 

et al., 1999; Sehat et al., 2007). Alternatively, ubiquitylation can influence protein 

phosphorylation by regulating kinase activity (Hunter, 2007), suggesting that multiple 

PTMs can work in a cis-regulatory manner to fine tune a plethora of complex cellular 

processes. Phosphorylation is a direct and single step of addition of the phosphate group 

by protein kinases. However, ubiquitylation is catalyzed in a stepwise manner through an 

enzymatic cascade requiring an E1 ubiquitin activating-enzyme, an E2 ubiquitin-

conjugating enzyme, and an E3 ubiquitin-ligating enzymes (Deshaies and Joazeiro, 

2009). Both phosphorylation and ubiquitylation are reversible by protein phosphatases 

and deubiquitylation enzymes (DUBs), respectively (Alonso et al., 2004; Hershko and 

Ciechanover, 1998).  

Protein tyrosine phosphatases (PTPs) can contribute to the dynamic signal 

transduction and protein regulation. Increasing evidence has suggested that PTPs have 

essential roles in tumorigenesis and are primarily considered as tumor suppressors (Julien 
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et al., 2011). For example, many studies have shown protein tyrosine phosphatase non-

receptor type 14 (PTPN14) is mutated in multiple types of cancers including colorectal, 

breast, ovarian, liver cancers (Sjoblom et al., 2006; Wang et al., 2012; Wang et al., 2004; 

Zhang et al., 2013). The most well known function of PTPN14 is to inhibit the oncogenic 

function of yes-associated protein 1 (YAP1), a protein involved in the hippo-signaling 

pathway (Liu et al., 2013; Wang et al., 2012). Recently, the p53-PTPN14-YAP1 pathway 

has shown to suppress pancreatic cancer progression and PTPN14 also suppresses 

metastasis by limiting protein trafficking in breast cancer (Belle et al., 2015; Mello et al., 

2017). PTPN14 (also known as PTPD2 or PEZ) has an N-terminal FERM domain and a 

C-terminal phosphatase domain and plays critical roles in cellular proliferation and 

growth, cell-cell adhesion and cell migration (Smith et al., 1995; Wadham et al., 2000, 

2003) Only three substrates (YAP1, B-catenin, and p130Cas) have been identified so far, 

and the other biological function of PTPN14 in different genetic and cellular context still 

remains to be determined (Liu et al., 2013; Wadham et al., 2003; Zhang et al., 2013).  

The Roquin family of proteins consists of Roquin1 (Rc3h1) and Roquin2 

(Rc3h2). The N-terminal region of Roquin proteins comprises a RING finger, a 

conserved ROQ domain, and a CCCH-type zinc finger. Mechanistically, mRNAs that 

contain a constitutive-decay element (CDE) in a 3’ UTR sequence are recognized by the 

ROQ domain of Roquin1 and 2 and undergo mRNA deadenylation and ultimately 

degradation (Leppek et al., 2013; Schlundt et al., 2014; Tan et al., 2014). Most of Roquin 

mRNA targets identified by the genome-wide crosslinked-immunoprecipitation (CLIP)-

Seq are involved in immunity, inflammation, and development. The recent study on the 
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paracaspase MALT1 has revealed a regulatory control of Roquin proteins in T cells. 

When CD4+ T cells are stimulated with pharmacological agents PMA and ionomycin, 

Roquin proteins are cleaved by MALT1 and the specific MALT1 inhibitor, z-VPR-fmk, 

blocks this cleavage (Jeltsch et al., 2014). Moreover, our study in the chapter 3 shows 

that Roquin2 protein is targeted by CULLIN3-KLHL6 complex for proteasomal 

degradation. Whether there are any other regulation components for Roquin2 protein 

stability remain open questions.  

Here, we show that tyrosine 691 of Roquin2 is directly phosphorylated in cells 

and this phosphorylation disrupts interaction between Roquin2 and KLHL6. We also 

present evidence that PTPN14 forms a trimeric complex with Roquin2 and KLHL6 and 

enhances the KLHL6-Roquin2 interaction. Specifically, PTPN14 binds to the end of C-

terminus domain of Roquin2 via its phosphatase domain. Overexpression of the wild-type 

PTPN14 in B-cell lymphomas decreases the Roquin2 protein abundance compared to that 

of trapping mutant PTPN14. These finding reveal PTPN14 as a novel regulator for 

Roquin2 protein stability and add another layer of regulation on KLHL6-mediated 

Roquin2 protein degradation. 

 

 

Results 

Tyrosine 691 in Roquin2 is phosphorylated in vivo 

Our previous data in the chapter 3 shows that the integrity of tyrosine 691 residue 

(Y691) in Roquin2 is critical for KLHL6 interaction as mutation to alanine and 
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phenylalanine increases the protein stability. Since the tyrosine residue is often modified 

post-translationally by phosphorylation (Hunter, 2007), we generated a phospho-specific 

antibody against Y691 residue to test this hypothesis. HEK293T cells were transfected 

with FLAG-STREP-tagged wild-type (WT) or FLAG-STREP-tagged Roquin2 (Y691F) 

mutant, a non-phosphorylatable form of tyrosine. To increase the level of cellular 

tyrosine phosphorylation, we treated the transfected cells with or without pervanadate, a 

complex from vanadate and hydrogen peroxide, (Heffetz et al., 1990; Secrist et al., 1993) 

for 15 min before SDS-lysis and affinity purification by streptavidin beads. After the 

purification, the beads were treated with or without lamda (λ)-phosphosphotase (Fig 

5.1A). Pre-treatment of cells with pervanadate induced a strong phosphorylation of 

proteins in tyrosine as detected by analysis of whole cell lysates with a phospho-tyrosine 

antibody (Fig. 5.1B). Under pervanadate treatment conditions, our phospho-antibody 

specifically recognized Roquin2 (WT), but not the Roquin2 (Y691F) mutant (Fig. 5.1C). 

To further assess the phospho-specificity of our antibody, we de-phosphorylated Roquin2 

(WT) with λ-phosphatase (Fig 5.1A and 5.1C). This treatment abrogated the ability of 

our antibody to recognize Roquin2 (WT) isolated from pervanadate treated cells, 

suggesting that the antibody, indeed, recognizes a phosphorylated moiety in position 691. 

Notably, the antibody could not detect the phosphorylation of tyrosine 691 at the steady 

state. This could mean that the basal level of Roquin2 phosphorylation is very low or that 

our antibody is not sensitive enough to detect the basal phosphorylation. 

All together, our data suggest that the tyrosine in position 691 of Roquin2 is 

phosphorylated in cells.  
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Tyrosine 691 phosphorylation in Roquin2 is inhibitory for KLHL6 interaction 

Most PTMs function is a creation of binding sites to promote recognition domains 

for the protein interaction (Seet et al., 2006). Given that tyrosine 691 is critical for 

interaction between KLHL6 and Roquin2 (chapter 3), we, next, investigated to assess the 

effect of tyrosine 691 phosphorylation on the KLHL6-Roquin2 interaction. Since we 

have found that tyrosine 691 is phosphorylated upon the pervanadate treatment (Fig 5.1B 

and 5.1C), we examined the interaction between Roquin2 and KLHL6 in the same 

condition. Interestingly, the pervanadate treatment disrupted the binding between 

Roquin2 and KLHL6, suggesting that tyrosine phosphorylation negatively regulates the 

interaction of the two proteins (Fig 5.2A). Next, to directly assess whether tyrosine 

phosphorylation is inhibitory for the KLHL6-Roquin2 interaction, we synthesized an 

unphospho- and phospho-peptide in tyrosine 691 (Fig 5.2B). Utilizing these peptides, we 

performed in vitro binding assays and demonstrated that phosphorylation of tyrosine 691 

impaired the ability to Roquin2 to associate with KLHL6 (Fig 5.2B). We also confirmed 

that the peptide without the phosphorylation efficiently interacted with in vitro-translated 

recombinant KLHL6 protein.  

Collectively, these data show that phosphorylation at tyrosine 691 in Roquin2 

negatively regulates the KLHL6-Roquin2 interaction.  

 

PTPN14 specifically interacts with Roquin2 
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 Since Roquin2, but not its paralog Roquin1, specifically interacts with KLHL6, 

we hypothesized that tyrosine 691 could be modified by a kinase or phosphatase specific 

to Roquin2. To gain insight into the regulation components of tyrosine 691 

phosphorylation in Roquin2, we compared the protein interactome of Roquin1 (WT) to 

that of Roquin2 (WT) in HEK293T cells. FLAG-Roquin1 or FLAG-Roquin2 complexes 

were biochemically immunopurified and the tryptic digestion of each protein eluate was 

analyzed by mass spectrometry (Fig 5.3A and Supplementary table 5.1). It has been 

established that Roquin proteins recruit the CCR4-NOT complex through C-terminal 

region of the proteins (Leppek et al., 2013; Sgromo et al., 2017). Our proteaomic analysis 

validated that Roquin1 and Roquin2 function by recruiting deadenylation factors such as 

CNOT1, CNOT2, CNOT3, CNOT7, CNOT10, and CNOT11 (Figure 5.3B). 

Additionally, we also identified a variety of ribosomal protein genes that are essential for 

eurkaryotic ribosome assembly such as RPS or RPL genes (Provost et al., 2013; Warner, 

1999). More importantly, we identified PTPN14 as a specific binding partner of Roquin2 

immunoprecipitates as opposed to Roquin1 immunoprecipitates, suggesting that PTPN14 

is a novel interactor of Roquin2 (Fig 5.3B). PTPN14 is a non-receptor type of tyrosine 

phosphatase (Smith et al., 1995). To validate the mass spectrometric analysis, we 

expressed and immunoprecipitated FLAG-tagged Roquin1 or Roquin2 from HEK293T 

cells and confirmed interaction of endogenous PTPN14 with Roquin2 specifically. 

Roquin1, although expressed at a higher level than Roquin2, is incapable of binding with 

PTPN14 (Fig 5.3C).  

 Altogether, we identified PTPN14 as a specific binding partner of Roquin2. 
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PTPN14 binds the C-terminal region of the Roquin2 protein through its phosphatase 

domain 

 To determine the regions of Roquin2 that contribute to the interaction with 

PTPN14, we generated a set of refined C-terminal deletion mutants in Roquin2 by site-

directed mutagenesis. Given that Roquin1 and Roquin2 have a high sequence similarity 

including the RING, ROQ, and zinc finger domains (Pratama et al., 2013) and that 

PTPN14 specifically interacts with Roquin2, we predicted that the binding region should 

be confined in the C-terminal region of Roquin2. Consistent with our hypothesis, all C-

terminal deletions eliminated the ability of Roquin2 to bind to PTPN14 upto the mutant 

lacking the very C-terminal 50 amino acids (Fig 5.4A) (Pratama et al., 2013). 

Interestingly, Roquin1 differs from Roquin2 in its C-terminal region as Roquin1 contains 

a coiled-coil domain instead of a hydrophobic rich region domain that might be 

responsible for binding to PTPN14.   

Next, we utilized a panel of PTPN14 deletion mutants described from the 

previous study (Szalmas et al., 2017). These mutants include deletions of FERM domain 

(important for cell adhesion and cytoskeletal function), the linker 1 region, the linker 2 

region (required for YAP1 interaction), the linker 3 region, and the phosphatase (PTP) 

domain (Ogata et al., 1999; Wang et al., 2012). We co-transfected HEK293T cells with 

N-terminal V5 tagged-PTPN14 wild-type and mutants with FLAG-tagged Roquin2, and 

FLAG immunoprecipitates were probed with V5 and FLAG antibodies. FLAG-Roquin2 
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efficiently co-precipitated wild-type and deletion mutants of PTPN14, except for the 

mutant lacking the PTP domain (Fig 5.4B).  

Thus, we concluded that the PTP phosphatase domain of PTPN14 is required to 

bind the C-terminus of Roquin2. 

  

PTPN14 enhances interaction between KLHL6 and Roquin2  

Next, we investigated whether PTPN14 affects the interaction between KLHL6 

and Roquin2. KLHL6 is an E3 ligase that specifically binds, ubiquitylates and degrades 

Roquin2 as shown in the chapter 3. We transfected HEK293T cells stably expressing 

HA-KLHL6 with FLAG-tagged Roquin2 and V5-tagged PTPN14. Cell lysates were 

immunoprecipitated with anti-FLAG, and the precipitates were probed with FLAG, 

KLHL6, or V5 antibodies. As expected, FLAG-Roquin2 co-immunopurified both V5-

tagged PTPN14 and HA-tagged KLHL6, indicating that Roquin2, KLHL6 and PTPN14 

form a trimeric complex (Fig 5.5A). Furthermore, expression of PTPN14 increased the 

binding of KLHL6 and Roquin2. These results suggest that PTPN14 might play a role in 

promoting KLHL6 and Roquin2 interaction for the efficient degradation of Roquin2. 

Given that phosphorylation at tyrosine 691 of Roquin2 is inhibitory for KLHL6 binding, 

we expected that PTPN14 might regulate tyrosine 691 directly to bring KLHL6 and 

Roquin2 together.  

Thus, we propose a model where PTPN14 binds at the hydrophobic rich region of 

Roquin2 and dephosphorylates tyrosine 691 phosphorylation to enhance KLHL6-

Roquin2 interaction (Fig 5.5B).  
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PTPN14 regulates Roquin2 protein stability  

 Having established that PTPN14 forms a trimeric complex with Roquin2 and 

KLHL6, we, then, investigated whether PTPN14 promotes degradation of Roquin2 via 

KLHL6. We transfected HA-tagged Roquin2, V5-tagged PTPN14, Flag-tagged KLHL6 

in HEK293T cells in different combinations and see whether PTPN14 has any effects on 

Roquin2 protein levels. As shown in Figure 5.6A, expression of KLHL6 induced 

degradation of Roquin2 and, more importantly, the degradation was enhanced when 

Roquin2 was co-expressed with PTPN14. This suggests that PTPN14 promotes Roquin2 

degradation dependent on KLHL6.  

 We next examined the kinetics of Roquin2 degradation by expressing PTPN14 

using a doxycycline-dependent promoter in OCI-LY10, a human DLBCL cell line 

expressing both endogenous KLHL6 and Roquin2. We generated two different cell lines: 

one expressing PTPN14 (WT) and the other expressing PTPN14 (D1079A) mutant. This 

mutant traps the phosho-substrates by keeping them from being dephosphorylated 

(Blanchetot et al., 2005) (Zhang et al., 2013). We stimulated these cells with the fragment 

affinity-purified antibody F(ab’)2-IgM to activate B-cell receptor (BCR) signaling 

pathway after pre-treatment with the doxycycline for 12 hours. We have shown that BCR 

crosslinking induces degradation of Roquin2 in a KLHL6-dependent manner in ABC-

DLBCLs in chapter 3. As shown in Figure 5.6B, Roquin2 was degraded upon BCR 

stimulation in cells expressing PTPN14 (WT) while this degradation was diminished in 

cells expressing PTPN14 (D1079A) mutant. This suggests that the trapping mutant might 
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potentially enrich phosphorylated Roquin2, which might be insensitive to KLHL6-

mediated degradation, thus leading to accumulation of Roquin2 substrate.  

 All together, we conclude that PTPN14 functions in promoting Roquin2 

degradation. 

  

 

Discussion 

 By generating a phospho-specific antibody against tyrosine 691 in Roquin2, we 

have demonstrated that Roquin2 is phosphorylated in vivo. Upon phosphorylation, 

KLHL6 dissociates from Roquin2, so phosphorylation directly inhibits the KLHL6-

mediated protein degradation. Using a proteomic analysis to analyze co-associated 

proteins to Roquin2, we have identified the tyrosine phosphatase PTPN14. PTPN14 

interacts with Roquin2 and regulates Roquin2 protein stability, as the trapping mutant is 

able to inhibit BCR-mediated degradation of Roquin2.  

Furthermore, we have shown that the integrity of tyrosine 691 residue in Roquin2 

is critical for KLHL6 and Roquin2 interaction as both mutation of tyrosine to alanine or 

phenylalanine can disrupt interaction of two proteins in chapter 3. Now, we have the 

evidence that phosphorylation at this site inhibits its binding to KLHL6. Consistent with 

this data, we show that phosphorylated Roquin2 peptide abrogated the ability to Roquin2 

to co-immunoprecipitate with KLHL6, suggesting phosphorylation-dependent substrate 

stabilization. Several other studies have shown that phosphorylation disrupts interaction 

between E3 ligases and substrates. Although most of substrates of SCF ubiquitin ligases 
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are recognized in a phosphorylation-dependent manner, phosphorylation of p85β at 

tyrosine residue has been shown to inhibit the interaction with its ligase FBXL2 (Kuchay 

et al., 2013). Furthermore, Aurora A is phosphorylated in serine residue within “A-box” 

that inhibits APC/C (the ubiquitin ligase anaphase-promoting complex)-dependent 

degradation (Song and Rape, 2011).  

The role of tyrosine 691 phosphorylation prompts us to search for tyrosine kinases 

or phosphatases, and we are able to identify PTPN14 as a binding partner for Roquin2 by 

mass spectrometry analysis. Since Roquin2 can form a trimeric complex with PTPN14 

and KLHL6, it is conceivable that PTPN14 can bring Roquin2 and KLHL6 together to 

ensure de-phosphorylation and efficient degradation of Roquin2. In further support of this 

idea, expression of PTPN14 makes Roquin2 interact with KLHL6 more strongly, 

suggesting that tyrosine phosphorylation can play a role in protein-protein interaction.  

Our mapping experiments show that PTPN14 binds at the C-terminus of Roquin2 

through its PTP domain. This is in line with the fact that PTPN14 binds only Roquin2, 

but not Roquin1. The sequence of RING, ROQ, and CCCH (C3H) domain in Roquin1 

and Roquin2 has similarity of 82%, 99%, 81%, respectively (Pratama et al., 2013), so it is 

likely that PTPN14 binds the C-terminus of Roquin2 where sequence similarity with 

Roquin1 is only about 45%. Although we have not determined the structure of this 

trimeric complex, it would be interesting to investigate where this tyrosine 

phosphorylation is located within the complex and how conformational change occurs 

upon binding of PTPN14 to KLHL6-Roquin2 complexes.  
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The fact that tyrosine 691 can be phosphorylated in cells suggests that there might 

be potential tyrosine kinases involved in this process. In agreement with this hypothesis, 

we are able to see the effects of overexpression of PTPN14 in both HEK293T cells and 

human DLBCL cell line in terms of Roquin2 down-regulation, suggesting there might be 

a basal level of tyrosine 691 phosphorylation in cells. Recent study shows that Roquin1 

can specifically interact with the α1 subunit of AMPK kinase and negatively regulate 

AMPK kinase activity in follicular helper T cells (Ramiscal et al., 2015). Furthermore, 

Roquin2 can interact and promote ubiquitylation and proteasomal degradation of ASK1 

kinase upon the oxidative stress to inhibit reactive oxygen species (ROS)-induced cell 

death (Maruyama et al., 2014). Although, to date, there are no tyrosine kinases identified 

that associate with Roquin2 proteins, it is possible that PTM crosstalk between potential 

tyrosine kinase and PTPN14 phosphotase exists to fine-tune regulation of Roquin2 

stability. Furthermore, in chapter 3, we have found that BCR signaling induces 

degradation of Roquin2 in a KLHL6-dependent manner. It is conceivable that de-

phosphorylation at tyrosine 691 of Roquin2 might happen in this specific context to 

promote degradation. Moreover, it would be also interesting to examine whether Roquin2 

is constitutively phosphorylated by unknown tyrosine kinases in ABC-DLBCL cell lines 

that exhibit chronic active BCR signaling.  
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Figure 5.1 Tyrosine 691 in roquin2 is phosphorylated in vivo 

(A) A schematic model of validation for phospho-antibody again tyrosine 691 

residue in Roquin2. (B) HEK293T cells were transfected with cDNAs encoding FLAG-

STREP-tagged Roquin2 (WT), Roquin2 (Y691F) or empty vector (EV). The transfected 

cells were treated with 100µM of pervanadate for 15 min and lysed in a denatured 

condition (1% SDS-lysis). Cell lysis was diluted with NP-40 buffer (0.1% SDS final 

concentration) and whole cell lysates were used for immunoblot analysis. (C) Exogenous 

proteins were affinity-purified (AP) from cell extracts of (b) with an anti-streptavidin 

resin. The purified complexes were, then, treated with lamda (λ)-phosphotase and probed 

with antibodies to the indicated proteins.  
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Figure 5.2 Tyrosine 691 phosphorylation in Roquin2 is inhibitory for KLHL6 

interaction 

(A) HEK293T cells stably expressing HA-tagged KLHL6 were transfected with cDNAs 

encoding FLAG-tagged Roquin2. The transfected cells were treated with 100µM of 

pervanadate for 15 min and exogenous proteins were immunopurified from cell extracts 

with an anti-FLAG resin. Immunocomplexes were probed with antibodies to the 

indicated proteins. Bottom panel shows whole cell lysates (WCL). (B) Top panel shows a 

schematic representation of the sequence of the biotinylated unphosphosphorylated-

Roquin2 peptides or phosphorylated-Roquin2 peptides. Bottom panel shows a 

streptavidin pull-down assay using the indicated amount of biotinylated Roquin2 peptides 

incubated with FLAG-tagged in-vitro translated KLHL6 protein. Affinity Purification, 
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AP. Immunoblot analysis for the indicated proteins was performed using KLHL6 

antibody. 
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Figure 5.3 PTPN14 specifically interacts with Roquin2 

(A) Biochemical purification of Roquin1 or Roquin2 protein complexes. HEK293T cells 

were transfected with cDNAs encoding FLAG-Roquin1 (WT) or FLAG-Roquin2 (WT). 

Proteins were immunoprecipitated (IP) with an anti-FLAG resin, eluted with a FLAG 

peptide. 1% of samples were resolved by SDS-PAGE. The gel was stained with silver 

staining for protein visualization. (B) Mass spectrometry analysis of Roquin1 (WT) and 

Roquin2 (WT). Normalized Spectral Abundance Factors (NSAFs) were calculated for 

each detected protein and plotted on a log scale. X-axis represents NSAF scores 

distribution of all proteins detected from Roquin2 protein complexes while Y-axis 

represents NSAF scores distribution of all proteins detected from Roquin1 protein 

complexes. Red dots represent NSAF scores for the baits such as Roquin1 and Roqui2. 

The green dot represents the NSAF score for PTPN14. The orange and cyan dots and 

circles represent common interactors between Roquin1 and Roquin2. (C) HEK293T cells 

were transfected with cDNAs encoding empty vector (EV), FLAG-tagged Roquin1 or 

FLAG-tagged Roquin2. Exogenous proteins were immunopurified from cell extracts with 

an anti-FLAG resin and immunocomplexes were probed with antibodies to the indicated 

proteins. Bottom panel shows whole cell lysates (WCL). 
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Figure 5.4 PTPN14 binds the C-terminal region of the Roquin2 protein through its 
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(A) HEK293T cells were transfected with constructs encoding an empty vector (EV), 

FLAG-tagged Roquin2 (WT) or FLAG-tagged Roquin2 deletion mutants as indicated. 

Top panel shows a schematic representation of Roquin2 (WT) or Roquin2 deletion 

mutants. Roquin2 mutants that interact (+) or do not interact (-) with endogenous 

PTPN14 are shown. Bottom panel shows immunoblot analysis of FLAG-Roquin2 

immunoprecipitation (IP). Immunocomplexes were probed with antibodies to the 

indicated proteins. (B) HEK293T cells were co-transfected with constructs encoding an 

empty vector (EV), V5-tagged PTPN14 (WT) or V5-tagged PTPN14 deletion mutants 

and FLAG-tagged Roquin2 as indicated. Top panel shows a schematic representation of 

PTPN14 (WT) or PTPN14 internal deletion mutants. PTPN14 mutants that interact (+) or 

do not interact (-) with exogenous Roquin2 are shown. Bottom panel shows immunoblot 

analysis of FLAG-Roquin2 immunoprecipitation (IP). Immunocomplexes were probed 

with antibodies to the indicated proteins. 
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Figure 5.5 PTPN14 enhances interaction between KLHL6 and Roquin2  

(A) HEK293T cells stably expressing HA-tagged KLHL6 were co-transfected with 

cDNAs encoding FLAG-tagged Roquin2 and V5-tagged PTPN14. Exogenous Roquin2 

proteins were immunopurified from cell extracts with an anti-FLAG resin and 

immunocomplexes were probed with antibodies to the indicated proteins. Bottom panel 

shows whole cell lysates (WCL). (B) A schematic model of trimeric complex composed 

of Roquin2, KLHL6 and PTPN14. PTPN14 binds Roquin2 through its PTP domain and 

KLHL6 binds Roquin2 at tyrosine 691 residue. PTPN14 might regulate Roquin2 and 

KLHL6 interaction by direct de-phosphorylation of tyrosine 691 in Roquin2. 
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Figure 5.6 PTPN14 regulates Roquin2 protein stability 

(A) HEK293T cells were co-transfected with cDNAs encoding FLAG-HA-tagged 

Roquin2 (WT), FLAG-tagged KLHL6, and increasing amounts of V5-tagged PTPN14 in 

different combinations. Whole cell lysates were probed with antibodies to the indicated 

proteins. (B) OCI-LY10 cells were lenti-virally transduced to express doxycycline 

(DOX) controllable HA-tagged PTPN14 (WT) or PTPN14 (D1079A) mutant. DOX was 

pre-added for 12 hours and, then, cells were stimulated with anti-IgM (10µg/ml) with 

indicated time points. Whole cell lysates were probed with antibodies to the indicated 

proteins. 
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Data set Cell Type Condition # Replicates Accession 
Code 

Mass 
Spectrometry  

HEK293T cells Empty Vector, 
Roquin1 (WT), 
Roquin2 (WT)  

1 PXD009312 

 

Table 5.1 Proteomic analyses of Roquin1 and Roquin2 complexes generated in this 

dissertation 

List of Roquin1 and Roquin2 interacting proteins identified by proteomic analysis of 

Roquin1 and Roquin2 complexes purified from HEK293T cells. 
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CHAPTER 6 : CONCLUSIONS AND FUTURE DIRECTIONS 

 

KLHL6 as a tumor suppressor in DLBCL 

Here, we find that KLHL6 is a novel CULLIN3-based E3 ligase and reveal that 

KLHL6 cancer-associated mutations are loss of function. We also demonstrate that loss 

of KLHL6 (WT) promotes cancer cell proliferation and survival with anti-apoptotic 

effects while re-expression of KLHL6 (WT) in KLHL6-null cells has an opposite effect. 

Although these data suggest that KLHL6, at least, is a tumor suppressor in terms of tumor 

maintenance in cancer cells, we do not have any evidence whether loss of KLHL6 plays a 

significant role in DLBCL tumor initiation or maintenance in genetic mouse models.  

Our laboratory has generated Klhl6-null animals using heterozygous embryos 

from the EMMA consortium. Consistent with the fact that KLHL6 is specifically 

expressed in lymphoid tissues, Klhl6-null mice show several defects in B-cell 

development. The population of immature B-cells is increased while the frequency of 

mature B-cells is decreased two- to three-fold in the Klhl6-null mice. We also found that 

the frequencies of progenitor B (pro-B) and precursor B (pre-B) cells in bone marrow of 

Klhl6−/− mice are normal with no defects in hematopoietic stem cells and thymic T-cells, 

suggesting that there is a specific block in B-cell differentiation from the immature to 

mature transition. All of results above are indeed in agreement with previous 

observations that Klhl6 is not required for the early stages of B-cell development (Kroll et 

al., 2005). In addition to the B-cell defect in the bone marrow, Klhl6-null animals show a 

cell-intrinsic defect in GC-cell expansion upon immunization (Kroll et al., 2005). More 
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importantly, aging these Klhl6−/− mice did not show any symptoms of lymphoma and we 

thus concluded that loss of KLHL6 is not sufficient to induce cellular transformation and 

there likely needs to be other genetic alterations to contribute to lymphomagenesis.  

Genome analysis of DLBCL revealed co-occurrence of KLHL6 mutations with 

translocation of BCL6 under the IgH promoter (Morin et al., 2011), thus we expect that 

loss of KLHL6 is required for germinal center tumorigenesis induced by BCL6. The 

EµHA-Bcl6 mice mimicking a chromosomal translocation detected in human DLBCL 

patients develop lympho-proliferative diseases with increased germinal center formation 

and dysregulated post-germinal center differentiation. Starting at the age of 13 months, 

EµHA-Bcl6 show increased mortality, with tumors displaying morphological and 

immunophetypic features reminiscent of the human DLBCL (Cattoretti et al., 2005).  

We thus generated EµHA-Bcl6/Klhl6-/- mice by breeding our Klhl6-null mice with 

EµHA-Bcl6 mice (Cattoretti et al., 2005) and have now three cohorts of EµHA-

Bcl6/Klhl6-/-, EµHA-Bcl6/Klhl6-/+, EµHA-Bcl6/Klhl6+/+ mice for ongoing projects in our 

laboratory. We are monitoring these mice for any signs of lymphoma progression and 

will consider morbidity of mice at the end-point of the experiment to calculate the median 

survival and construct a Kaplan-Meier curve. We expect that the onset and penetrance of 

Eµ-HA-Bcl6-induced tumors will be accelerated in Klhl6-null mice. Moreover, since loss 

of KLHL6 promotes the survival of cancer cells, we expect that Klhl6-null mice have a 

survival advantage in producing secondary tumors. It will be also important to determine 

whether KLHL6-negative lymphomas are addicted to or dependent on Roquin2 for the 

growth and survival. We plan to perform a rescue experiment similar to in vitro system 
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where we will isolate splenic tumors from EµHA-Bcl6/Klhl6-/- mice and utilize shRNA 

against Roquin2 to knockdown before transplanting into syngeneic mice. Since loss of 

Roquin2 induces cellular apoptosis in ABC-DLBCL, we expect the lower penetrance 

and/or longer tumor latency in EµHA-Bcl6/Klhl6-/- mice with knockdown of Roquin2.  

It would be also interesting to investigate whether deleting Klhl6 in the context of 

B-cell lineage p53 deletion could uncover the tumor suppressive role of KLHL6. This 

experiment can be carried out by crossing Klhl6-null mice with CD19-Cre p53flox/flox 

mice. All of these in vivo investigations are required to shed light on how KLHL6 

contributes to pathogenesis of mature B-cell tumors and some of these further studies are 

ongoing in our laboratory. In the future, we will have direct evidence to state that KLHL6 

is a tumor suppressor in DLBCL biology. It is also worth noting that KLHL6 mutations 

are not observable at a high frequency in non-B-cell cancers, suggesting a possibly 

differential role for KLHL6 in a different genetic and cellular context.  

 

Roquin2 as an oncogene in DLBCL 

 We have demonstrated that deregulation of Roquin2 proteolysis or Roquin2 

stabilization affects Roquin2 target mRNA stability, which is dependent on a ROQ 

domain necessary for RNA recognition. More specifically, we show that KLHL6-

Roquin2 axis controls NF-κB activation in ABC-DLBCLs by controlling TNFAIP3/A20 

mRNA decay. However, Roquin proteins bind and degrade other NF-κB inhibitors 

mRNAs such as NFKBIZ and NFKBID (Leppek et al., 2013). NFKBID did not score in 

our RNA-sequencing analysis whereas NFKBIZ did score in our primary screen as a 
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gene that was down-regulated in non-degradable Roquin2 mutant (Y691F) but failed to 

score as a BCR-dependent transcript. Moreover, we also found that another NF-κB 

inhibitor, NFKBIE, scored in our primary RNA-sequencing screening, but was not 

effectively rescued in the secondary q-PCR screening. Despite the fact that some of these 

NF-κΒ pathway inhibitors might not be the direct targets of Roquin2, they are indirectly 

down-regulated by Roquin2 and may contribute to increased NF-κB activation for the 

survival of ABC-DLBCLs. We specifically chose to further study A20 and its 

downstream effects on the NF-κB signaling pathway, as it is the most well known tumor 

suppressor and negative regulator of NF-κB in ABC-DLBCL biology. However, we 

cannot exclude the possibility that the growth advantages induced by stabilization of 

Roquin2 could be due to combinatorial effects of multiple Roquin2 specific mRNA 

targets. It would be interesting to see whether any other NF-κB pathway inhibitors are 

affected by the KLHL6-Roquin2 axis in ABC-DLBCLs.  

Additionally, we also found TNFRSF14 (the tumor necrosis factor receptor 

superfamily member herpesvirus entry mediator, HVEM) as Roquin2 specific mRNA 

targets that might play a role in GCB-DLBCLs since it is frequently mutated in GC 

lymphomas, especially follicular lymphoma (Launay et al., 2012; Lohr et al., 2012). 

TNFRSF14 regulates the immune response in T-cells by activation of inhibitory and 

inflammatory responses. TNFRSF14 can act as a receptor by binding TNF-related ligands 

such as lymphotoxin-α and LIGHT (lymphotoxin-like, exhibits inducible expression, and 

competes with herpes simplex virus glycoprotein D for HVEM, a receptor expressed by T 

lymphocytes). It also can act as a ligand by engaging with the immunoglobulin 
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superfamily, B and T lymphocyte attenuator (BTLA) and CD160, and regulate diverse 

signaling pathways for the immune responses (Murphy and Murphy, 2010). A recent 

study reveals that TNFRSF14 loss increases production of TNF family of cytokines that 

activate lymphoid stromal cells and recruitment of T follicular help (TFH) cells. This, in 

turn, provides a tumor-supportive microenvironment via production of IL-4, IL-21 and 

CD40L (Ame-Thomas and Tarte, 2014; Boice et al., 2016). Therefore, it is conceivable 

that mutations of KLHL6 with Roquin2 stabilization might contribute to the pathogenesis 

of follicular lymphoma by linking tumor microenvironment. In line with this, we cannot 

exclude the fact that KLHL6 might have other substrates that are involved in different 

biological processes such as cellular migration, adhesion or immune surveillance in 

patients. We plan to study other unknown KLHL6 substrates or different Roquin2 mRNA 

targets and further evaluate the functional impact of the KLHL6-Roquin2 axis in GCB-

DLBCLs. We have defined the interactome landscape of KLHL6 for putative substrates 

and interactors, and we plan to validate these novel candidate substrates similarly to what 

we have performed with Roquin2. The characterization of these novel substrates will 

constitute the basis for new projects, and future studies will address another molecular 

mechanisms controlled by KLHL6-mediated degradation in the context of B-cell cancers. 

Although Roquin2 stabilization or deregulation of Roquin2 proteolysis promotes 

cancer cell proliferation and survival and loss of Roquin2 causes cellular apoptosis in 

ABC-DLBCLs, we do not have genetic mouse evidence to state that Roquin2 is an 

oncogene. Several studies have shown that overexpression of Roquin1 in T-cell 

lymphoma cell lines or Roquin1 transgenic mice in T-cells promotes production of 
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inflammatory cytokines such as IL-2, TNF-α, IFN-γ and develop more severe collagen-

induced arthritis with autoimmune symptoms (Ji et al., 2012; Kim et al., 2012). 

Moreover, T-lymphoma cell lines overexpressing Roquin were hyper-responsive to T-cell 

receptor stimulation with anti-CD3/CD28 in vitro. This is in line with the fact that 

Roquin proteins might play an oncogenic role by regulating inflammatory and immune-

related mRNA targets in T-cells. Although Roquin1 protein alterations or mutations are 

not seen in angioimmunoblastic T-cell lymphoma (AITL), Roquin2 missense mutation at 

tyrosine residue (Y691) was recently uncovered in thymic lymphoma from TCGA data 

analysis. This suggests that Roquin1 and Roquin2 might play a non-redundant role in T-

cell cancers. This is also in line with the fact that KLHL6 mutation only affects Roquin2 

proteolysis in B-cell cancers and not Roquin1, implying that there is a specific function 

of Roquin2 in the development of DLBCLs. Transgenic mice overexpressing Roquin2 or 

the non-degradable Roquin2 mutant (Y691F) in the germinal center or in mature B-cells 

might be helpful to model the oncogenic role of Roquin2 in DLBCL in vivo. Moreover, 

our collaborators and we are currently breeding Roquin2 knockout mice with mouse 

model of murine DLBCLs. We expect that knockout of Roquin2 will decrease the 

oncogenic progression of DLBCL tumors with lower tumor penetrance and longer tumor 

latency.  

 

PTPN14 as a tumor suppressor in DLBCL 
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We have demonstrated that Roquin2 protein stability is decreased by 

overexpression tyrosine phosphatase, PTPN14. Moreover, Roquin2 is phosphorylated in 

tyrosine 691 residue in cells and this phosphorylation disrupts KLHL6-Roquin2 

interaction. Although we do not have direct evidence that PTPN14 dephosphorylates 

tyrosine 691 of Roquin2 at this point, we are currently performing in vitro phosphatase 

assay to link the mechanism of phosphorylation and protein degradation. PTPN14 has 

been regarded as a tumor suppressor in a variety of cancers as mutation and deletion are 

identified (Sjoblom et al., 2006; Wang et al., 2004; Zhang et al., 2013). Consistent with 

this idea, PTPN14 negatively regulates the stability of Roquin2, which plays an 

oncogenic role in ABC-DLBCL cell lines. In chapter 3, we have shown that stabilization 

of Roquin2 by cancer-associated mutations of KLHL6 or loss of KLHL6 promotes 

DLBCL growth and survival by regulation of mRNA decay of the tumor suppressor and 

NF-κB pathway inhibitor, TNFAIP3. The role of protein tyrosine phosphatases in 

lymphoma has not been extensively studied. However, there are some cases reported 

where PTPN1 that is frequently mutated in Hodgkin lymphoma, and primary mediastinal 

B cell lymphoma with loss of function mutations, suggesting a tumor suppressor role 

(Gunawardana et al., 2014). Furthermore, inactivating mutations and epigenetic silencing 

of PTPN13 have been reported in non-Hodgkin’s and Hodgkin’s lymphoma (Ying et al., 

2006).  

Interestingly, we have noticed PTPN14 protein is also expressed at very low 

levels and almost non-detectable in ABC-DLBCL cell lines (data not shown). As a future 

direction, it would be interesting to determine whether there are unknown mechanism to 
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down-regulate PTPN14 mRNA or protein in human B-lymphomas. Alternatively, 

whether overexpression of PTPN14 in ABC-DLBCLs has any impacts on cancel cell 

proliferation and whether it can regulate NF-κB pathway through Roquin2 degradation 

remain open questions.  

 

Concluding remarks 

The studies presented in this dissertation focus on defining molecular mechanisms 

by which the KLHL6-Roquin2 axis contributes to growth and survival of ABC-DLBCLs. 

This work provides insight into the distinct role of KLHL6 as an E3 ligase for Roquin2 

and how misregulation of this pathway impacts maintenance of mature B-cell cancers in 

in vitro and in vivo xenograft experiments. The identification of KLHL6 as the E3 ligase 

for Roquin2 provides essential information and tools to elucidate the molecular link 

between the ubiquitin proteasome system and mRNA decay. Understanding whether 

deregulation of Roquin2 proteolysis has any functional consequences in terms of mRNA 

decay will allow us to understand its role in B-cell biology further. Additionally, the 

studies here highlight the post-translational modifications that add another layer of 

regulation on KLHL6-Roquin2 axis. As targeting specific ubiquitin ligases is 

therapeutically feasible and relevant to human cancers, a deeper molecular understanding 

of KLHL6-mediated proteolysis of Roquin2 in cancers can potentially broaden 

therapeutic approaches for the treatment of B-cell malignancies.  
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